Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

You own 4 pairs of jeans, 12 clean T-shirts, and 4 wearable pairs of sneakers. How many outfits (jeans, T-shirt, and sneakers) can you create?

Short Answer

Expert verified
Answer: 192 different outfits

Step by step solution

01

Count the number of choices for jeans

There are 4 pairs of jeans, so there are 4 choices for jeans.
02

Count the number of choices for T-shirts

There are 12 clean T-shirts, so there are 12 choices for T-shirts.
03

Count the number of choices for sneakers

There are 4 wearable pairs of sneakers, so there are 4 choices for sneakers.
04

Apply the counting principle

The counting principle states that we can multiply the number of choices for each item to find the total number of possible combinations. In this case, we have: Total_outfits = Number_of_jeans * Number_of_T-shirts * Number_of_sneakers
05

Calculate the result

Substitute the values from steps 1, 2, and 3 into the equation to find the total number of outfits: Total_outfits = 4 * 12 * 4 Total_outfits = 192 So there are 192 different outfits that can be created using the given jeans, T-shirts, and sneakers.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Combinations
When we talk about combinations in mathematics, we refer to the selection of items from a larger pool where the order doesn't matter. For example, if you were picking fruit from a basket for a fruit salad, it wouldn't matter if you grabbed an apple first or last; the result would still be a fruit salad. Similarly, when creating an outfit from a selection of jeans, T-shirts, and sneakers, the order in which you choose the items doesn't matter; what matters is which items you choose.

Mathematically, combinations are a basic concept of combinatorics and are denoted as \( C(n, k) \), which represents the number of ways to choose \( k \) elements from a set of \( n \) elements. However, in the context of the exercise, we are not concerned with combinations because the choice of jeans, T-shirts, and sneakers does create a specific combination that defines an outfit, and here, the order of selection is acknowledged implicitly.

Since the context implies a specific selection process, we're talking about distinct outcomes, which is where permutation and the counting principle come into play, not the traditional combination formula.
Probability and Statistics
While this exercise does not explicitly involve probability and statistics, understanding combinations and counting principles lays the foundation for more advanced topics within these fields. In probability, we often calculate the likelihood of a specific combination of events, such as drawing a hand from a deck of cards or getting a certain outcome from rolling dice.

In terms of statistics, combinations help us understand sample spaces or the set of all possible outcomes, which is crucial for predictions and data analysis. For instance, knowing the total number of possible outfits, as calculated in the exercise, might help a clothing retailer forecast sales or manage inventory. While the calculation of the probability would require additional context and data, the counting techniques are integral in establishing the total number of outcomes from which any probability would be calculated.
Basic Counting Techniques
Basic counting techniques are essential tools in understanding how to approach problems involving quantities and possibilities. The most fundamental of these is the counting principle, also known as the fundamental principle of counting or the rule of product. This principle explains how to find the number of possible outcomes when there are multiple choices to be made, and each choice is independent of the others.

In the provided exercise, we see the counting principle at work. It simply states that if one event can occur in \(m\) ways and a second independent event can occur in \(n\) ways, then the total number of ways the two events can occur is \(m \times n\). The same logic applies to multiple events. Thus, we can find the total number of unique outfits by multiplying the number of options for jeans, T-shirts, and sneakers together. This technique simplifies the process of determining the number of possible combinations of items and is a foundational concept for more complex statistical calculations and for understanding probabilities.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Professional basketball is now a reality for women basketball players in the United States. There are two conferences in the WNBA, each with six teams, as shown in the following table. \(^{3}\) $$ \begin{array}{ll} \hline \text { Western Conference } & \text { Eastern Conference } \\ \hline \text { Minnesota Lynx } & \text { Atlanta Dream } \\ \text { Phoenix Mercury } & \text { Indiana Fever } \\ \text { Dallas Wings } & \text { New York Liberty } \\ \text { Los Angeles Sparks } & \text { Washington Mystics } \\ \text { Seattle Storm } & \text { Connecticut Sun } \\ \text { San Antonio Stars } & \text { Chicago Sky } \end{array} $$ Two teams, one from each conference, are randomly selected to play an exhibition game. a. How many pairs of teams can be chosen? b. What is the probability that the two teams are Los Angeles and New York? c. What is the probability that the Western Conference team is not from California?

Refer to Exercise 33. Suppose you are interested in following two independent traits in snap peas-seed texture \((\mathrm{S}=\) smooth \(, \mathrm{s}=\) wrinkled \()\) and seed color \((\mathrm{Y}=\) yellow, \(\mathrm{y}=\) green \()-\) in a secondgeneration cross of heterozygous parents. Remember that the capital letter represents the dominant trait. Complete the table with the gene pairs for both traits. All possible pairings are equally likely. a. What proportion of the offspring from this cross will have smooth yellow peas? b. What proportion of the offspring will have smooth green peas? c. What proportion of the offspring will have wrinkled yellow peas? d. What proportion of the offspring will have wrinkled green peas? e. Given that an offspring has smooth yellow peas, what is the probability that this offspring carries one s allele? One s allele and one y allele?

A large number of adults are classified according to whether they were judged to need eyeglasses for reading and whether they actually used eyeglasses when reading. The proportions falling into the four categories are shown in the table. A single adult is selected from this group. Find the probabilities given here. $$ \begin{array}{lcc} \hline & \begin{array}{c} \text { Used Eyeglasses } \\ \text { for Reading } \end{array} & \\ \hline \text { Judged to Need Eyeglasses } & \text { Yes } & \text { No } \\ \hline \text { Yes } & .44 & .14 \\ \text { No } & .02 & .40 \end{array} $$ a. The adult is judged to need eyeglasses. b. The adult needs eyeglasses for reading but does not use them. c. The adult uses eyeglasses for reading whether he or she needs them or not. d. An adult used glasses when they didn't need them.

A certain manufactured item is visually inspected by two different inspectors. When a defective item comes through the line, the probability that it gets by the first inspector is \(.1 .\) Of those that get past the first inspector, the second inspector will "miss" 5 out of \(10 .\) What fraction of the defective items get by both inspectors?

Use the mn Rule to find the number. Four coins are tossed. How many simple events are in the sample space?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free