Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Experiment III A sample space consists of five simple events with \(P\left(E_{1}\right)=P\left(E_{2}\right)=.15, P\left(E_{3}\right)=.4,\) and \(P\left(E_{4}\right)=2 P\left(E_{5}\right) .\) Find the probability of event \(B=\left\\{E_{2}, E_{3}\right\\}\).

Short Answer

Expert verified
Answer: The probability of event B is 0.55.

Step by step solution

01

Review the given information

The problem tells us the following probabilities: \(P(E_1) = P(E_2) = 0.15,\) \(P(E_3) = 0.4,\) \(P(E_4) = 2P(E_5).\)
02

Determine the additional probability

We know that the sum of all probabilities in a sample space must be 1: \(P(E_1) + P(E_2) + P(E_3) + P(E_4) + P(E_5) = 1.\) Substitute the given values into the equation: \(0.15 + 0.15 + 0.4 + 2P(E_5) + P(E_5) = 1.\) Combine the terms: \(0.7 + 3P(E_5) = 1.\)
03

Find the probability of \(E_5\)

Now, we can find the probability of \(E_5\): \(3P(E_5) = 1 - 0.7\) \(3P(E_5) = 0.3\) \(P(E_5) = \frac{0.3}{3}\) \(P(E_5) = 0.1\)
04

Calculate the probability of event \(B\)

Event B consists of \(E_2\) and \(E_3\). To find the probability of event B, we simply add the probabilities of \(E_2\) and \(E_3\): \(P(B) = P(E_2) + P(E_3)\) \(P(B) = 0.15 + 0.4\) \(P(B) = 0.55\) Thus, the probability of event \(B = \{E_2, E_3\}\) is 0.55.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Sample Space
In probability theory, a sample space is the set of all possible outcomes in a given experiment. Think of it as the foundation upon which probabilities are built. It includes every simple event that can possibly occur. For example, if you're flipping a coin, the sample space is \( \{\text{Heads, Tails}\} \). It lists all potential outcomes of a coin flip.

In our exercise, the sample space consists of five simple events: \(E_1, E_2, E_3, E_4,\) and \(E_5\). Each of these events represents a possible outcome. Together, they form the complete set of possibilities, ensuring that nothing is left out.

Understanding the sample space is crucial because it allows us to determine the likelihood of different events. It's the starting point for calculating probabilities, as each event within this space has a specific probability associated with it.
Simple Events
Simple events are individual outcomes within a sample space. They represent the most basic possible outcomes that cannot be broken down further. Each simple event in a sample space has its own probability which indicates how likely it is to occur.

In our specific example, the simple events are \(E_1, E_2, E_3, E_4,\) and \(E_5\). These can be thought of as the atomic level of all possible outcomes. For instance:
  • \(P(E_1) = 0.15\)
  • \(P(E_2) = 0.15\)
  • \(P(E_3) = 0.4\)
  • \(P(E_4) = 2P(E_5)\)
  • \(P(E_5)\)
These events are each unique and independent, standing alone in terms of the probabilities associated with them. Simple events lay the groundwork for more complex calculations, such as determining the likelihood of combined events and total probabilities.
Event Probability
Event probability refers to the chance that a particular event occurs. It's calculated by summing the probabilities of all the simple events that make up the event. For example, if an event consists of two simple events, the probabilities of these two are added together to find the total probability of the composite event.

Our exercise task was to find the probability of event \(B = \{E_2, E_3\}\). Since \(E_2\) and \(E_3\) are part of the sample space, and their probabilities are given, we can calculate the probability of \(B\) by adding them:
  • \(P(B) = P(E_2) + P(E_3)\)
  • \(P(B) = 0.15 + 0.4\)
  • \(P(B) = 0.55\)
This means there's a 55% chance that either \(E_2\) or \(E_3\) will occur, illustrating how event probability helps quantify the overall likelihood of complex outcomes.
Sum of Probabilities
A fundamental rule in probability theory is that the sum of all probabilities in a sample space must equal 1, or 100%. This makes sense because when considering all possible outcomes, one of them must happen. Hence, their total probability adds up to 1.

In our exercise, we were given probabilities for most of the simple events but had to deduce the rest. Using the equation:
\[ P(E_1) + P(E_2) + P(E_3) + P(E_4) + P(E_5) = 1 \] Allowed us to solve for the missing probability:\
  • \(0.15 + 0.15 + 0.4 + 2P(E_5) + P(E_5) = 1\)
  • Combine them to find \(3P(E_5) = 0.3\)
  • Solve the equation \(P(E_5) = 0.1\)
This crucial concept ensures that our probability calculations are consistent and accurate, forming the basis for understanding how probabilities interact within a sample space.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Evaluate the permutations. $$ P_{1}^{20} $$

Experiment III A sample space consists of five simple events with \(P\left(E_{1}\right)=P\left(E_{2}\right)=.15, P\left(E_{3}\right)=.4,\) and \(P\left(E_{4}\right)=2 P\left(E_{5}\right) .\) Find the probability of event \(A=\left\\{E_{1}, E_{3}, E_{4}\right\\}\).

Professional basketball is now a reality for women basketball players in the United States. There are two conferences in the WNBA, each with six teams, as shown in the following table. \(^{3}\) $$ \begin{array}{ll} \hline \text { Western Conference } & \text { Eastern Conference } \\ \hline \text { Minnesota Lynx } & \text { Atlanta Dream } \\ \text { Phoenix Mercury } & \text { Indiana Fever } \\ \text { Dallas Wings } & \text { New York Liberty } \\ \text { Los Angeles Sparks } & \text { Washington Mystics } \\ \text { Seattle Storm } & \text { Connecticut Sun } \\ \text { San Antonio Stars } & \text { Chicago Sky } \end{array} $$ Two teams, one from each conference, are randomly selected to play an exhibition game. a. How many pairs of teams can be chosen? b. What is the probability that the two teams are Los Angeles and New York? c. What is the probability that the Western Conference team is not from California?

A sample space consists of \(S=\left\\{E_{1}, E_{2}\right.\), \(\left.E_{3}, E_{4}\right\\} .\) List the simple events in "both \(A\) and \(B\)," " \(A\) or \(B\) or both," and "not \(B\) " for the events given in Exercises \(13-15 .\) $$A=\left\\{E_{2}, E_{4}\right\\} \text { and } B=\left\\{E_{2}, E_{3}, E_{4}\right.$$

Your family vacation involves a cross-country air flight, a rental car, and a hotel stay in Vancouver. If you can choose from four major air carriers, five car rental agencies, and three major hotel chains, how many options are available for your vacation accommodations?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free