Chapter 14: Problem 7
Suppose you wish to test the null hypothesis that three binomial parameters \(p_{A}, p_{B},\) and \(p_{c}\) are equal versus the alternative hypothesis that at least two of the parameters differ. Independent random samples of 100 observations were selected from each of the populations. Use the information in the table to answer the questions in Exercises \(5-7 .\) $$ \begin{array}{lrrrr} \hline & {\text { Population }} & \\ & \text { A } & \text { B } & \text { C } & \text { Total } \\ \hline \text { Successes } & 24 & 19 & 33 & 76 \\ \text { Failures } & 76 & 81 & 67 & 224 \\ \hline \text { Total } & 100 & 100 & 100 & 300 \end{array} $$ Use the approximate \(p\) -value to determine the statistical significance of your results. If the results are statistically significant, explore the nature of the differences in the three binomial proportions.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.