Chapter 12: Problem 8
What is the difference between deterministic and probabilistic models?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 12: Problem 8
What is the difference between deterministic and probabilistic models?
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeWhat diagnostic plot can you use to determine whether the assumption of equal variance has been violated? What should the plot look like when the variances are equal for all values of \(x ?\)
10\. Recidivism Recidivism refers to the return to prison of a prisoner who has been released or paroled. The data that follow reports the group median age at which a prisoner was released from a federal prison and the percentage of those arrested for another crime. \({ }^{7}\) Use the MS Excel printout to answer the questions that follow. $$ \begin{array}{l|lllllll} \text { Group Median Age }(x) & 22 & 27 & 32 & 37 & 42 & 47 & 52 \\ \hline \text { \% Arrested }(y) & 64.7 & 59.3 & 52.9 & 48.6 & 44.5 & 37.7 & 23.5 \end{array} $$ $$ \begin{aligned} &\text { SUMMARY OUTPUT }\\\ &\begin{array}{ll} \hline \text { Regression Statistics } & \\ \hline \text { Multiple R } & 0.9779 \\ \text { R Square } & 0.9564 \\ \text { Adjusted R Square } & 0.9477 \\ \text { Standard Error } & 3.1622 \\ \text { Observations } & 7.0000 \\ \hline \end{array} \end{aligned} $$ $$ \begin{aligned} &\text { ANOVA }\\\ &\begin{array}{llrrr} \hline & & & & {\text { Significance }} \\ & \text { df } & \text { SS } & \text { MS } & \text { F } & \text { F } \\ & & & & & \\ \hline \text { Regression } & 1 & 1096.251 & 1096.251 & 109.631 & 0.000 \\ \text { Residual } & 5 & 49.997 & 9.999 & & \\ \text { Total } & 6 & 1146.249 & & & \\ \hline \end{array} \end{aligned} $$ $$ \begin{array}{lrrrrrr} \hline& {\text { Coeffi- Standard }} \\ & \text { cients } & \text { Error } & \text { tStat } & \text { P-value } & \text { Lower } 95 \% & \text { Upper } 95 \% \\ \hline \text { Intercept } & 93.617 & 4.581 & 20.436 & 0.000 & 81.842 & 105.393 \\ \mathrm{x} & -1.251 & 0.120 & -10.471 & 0.000 & -1.559 & \- \\ \hline \end{array} $$ a. Find the least-squares line relating the percentage arrested to the group median age. b. Do the data provide sufficient evidence to indicate that \(x\) and \(y\) are linearly related? Test using the \(t\) statistic at the \(5 \%\) level of significance. c. Construct a \(95 \%\) confidence interval for the slope of the line. d. Find the coefficient of determination and interpret its significance.
Fill in the missing entries in the analysis of variance table for a simple linear regression analysis and test for a significant regression with \(\alpha=.05\) in Exercises \(3-4 .\) Calculate the coefficient of determination, \(r^{2},\) and interpret its significance. $$ \begin{array}{lclll} \hline \text { Source } & d f & \text { SS } & \text { MS } & F \\ \hline \text { Regression } & & 3 & & \\ \text { Error } & 14 & & 2 & \\ \hline \text { Total } & & & & \\ \hline \end{array} $$
Basics Use the information given in Exercises \(1-2\) (Exercises 1 and 3 , Section 12.2 ) to construct an ANOVA table for a simple linear regression analysis. Use the ANOVA \(F\) -test to test \(H_{0}: \beta=0\) with \(\alpha=.05 .\) Then calculate \(b\) and its standard error: Use a t statistic to test \(H_{0}: \beta=0\) with \(\alpha=.05 .\) Verify that within rounding \(t^{2}=F\). $$ n=8 \text { pairs }(x, y), S_{x x}=4, S_{y y}=20, S_{x y}=8 $$
Find the least-squares line for the data. Plot the points and graph the line on the same graph. Does the line appear to provide a good fit to the data points? $$\begin{array}{c|cccccc}x & 1 & 2 & 3 & 4 & 5 & 6 \\\\\hline y & 5.6 & 4.6 & 4.5 & 3.7 & 3.2 & 2.7\end{array}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.