Chapter 5: Problem 53
Let \(x\) be a hypergeometric random variable with \(N=15, n=3,\) and \(M=4\) a. Calculate \(p(0), p(1), p(2),\) and \(p(3)\). b. Construct the probability histogram for \(x\). c. Use the formulas given in Section 5.4 to calculate \(\mu=E(x)\) and \(\sigma^{2}\) d. What proportion of the population of measurements fall into the interval \((\mu \pm 2 \sigma) ?\) Into the interval \((\mu \pm 3 \sigma) ?\) Do these results agree with those given by Tchebysheff's Theorem?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.