Chapter 10: Problem 20
Two independent random samples of sizes \(n_{1}=4\) and \(n_{2}=5\) are selected from each of two normal populations: $$ \begin{array}{l|ccccc} \text { Population } 1 & 12 & 3 & 8 & 5 \\ \hline \text { Population } 2 & 14 & 7 & 7 & 9 & 6 \end{array} $$ a. Calculate \(s^{2},\) the pooled estimator of \(\sigma^{2}\). b. Find a \(90 \%\) confidence interval for \(\left(\mu_{1}-\mu_{2}\right),\) the difference between the two population means. c. Test \(H_{0}:\left(\mu_{1}-\mu_{2}\right)=0\) against \(H_{\mathrm{a}}:\left(\mu_{1}-\mu_{2}\right)<0\) for \(\alpha=.05 .\) State your conclusions.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.