Chapter 8: Problem 66
Find a \(99 \%\) lower confidence bound for the binomial proportion \(p\) when a random sample of \(n=400\) trials produced \(x=196\) successes.
Chapter 8: Problem 66
Find a \(99 \%\) lower confidence bound for the binomial proportion \(p\) when a random sample of \(n=400\) trials produced \(x=196\) successes.
All the tools & learning materials you need for study success - in one app.
Get started for freeSamples of 400 printed circuit boards were selected from each of two production lines \(A\) and \(B\). Line A produced 40 defectives, and line B produced 80 defectives. Estimate the difference in the actual fractions of defectives for the two lines with a confidence coefficient of \(.90 .\)
One of the major costs involved in planning a summer vacation is the cost of lodging. Even within a particular chain of hotels, costs can vary substantially depending on the type of room and the amenities offered. \(^{4}\) Suppose that we randomly select 50 billing statements from each of the computer databases of the Marriott, Radisson, and Wyndham hotel chains, and record the nightly room rates. $$\begin{array}{lccc} & \text { Marriott } & \text { Radisson } & \text { Wyndham } \\\\\hline \text { Sample average } & \$ 170 & \$ 145 & \$ 150 \\\\\text { Sample standard deviation } & 17.5 & 10 & 16.5\end{array}$$ a. Describe the sampled population(s). b. Find a point estimate for the average room rate for the Marriott hotel chain. Calculate the margin of error. c. Find a point estimate for the average room rate for the Radisson hotel chain. Calculate the margin of error. d. Find a point estimate for the average room rate for the Wyndham hotel chain. Calculate the margin of error. e. Display the results of parts \(\mathrm{b}, \mathrm{c},\) and d graphically, using the form shown in Figure \(8.5 .\) Use this display to compare the average room rates for the three hotel chains.
Find a \((1-\alpha) 100 \%\) confidence interval for a population mean \(\mu\) for these values: a. \(\alpha=.01, n=38, \bar{x}=34, s^{2}=12\) b. \(\alpha=.10, n=65, \bar{x}=1049, s^{2}=51\) c. \(\alpha=.05, n=89, \bar{x}=66.3, s^{2}=2.48\)
A random sample of \(n=900\) observations from a binomial population produced \(x=655\) successes. Estimate the binomial proportion \(p\) and calculate the margin of error.
An experimental rehabilitation technique was used on released convicts. It was shown that 79 of 121 men subjected to the technique pursued useful and crime- free lives for a three-year period following prison release. Find a \(95 \%\) confidence interval for \(p\), the probability that a convict subjected to the rehabilitation technique will follow a crime-free existence for at least three years after prison release.
What do you think about this solution?
We value your feedback to improve our textbook solutions.