Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Explain what is meant by "margin of error" in point estimation.

Short Answer

Expert verified
Short Answer: Margin of error is a measure of uncertainty around a point estimate, which is a single value approximation of an unknown population parameter derived from sampled data. The margin of error indicates how much the point estimate can deviate from the true population value and is used with a confidence level to construct a confidence interval for the population parameter. By considering the margin of error, researchers can accurately communicate and interpret statistical results, acknowledging the potential variability in their point estimates.

Step by step solution

01

Define Point Estimation

Point estimation is a statistical method to approximate the value of an unknown population parameter using a single value called the point estimate, derived from the sampled data. This can be the mean, median, or mode of a sample of the population depending on the context.
02

Introduce Margin of Error

Margin of error is a measure of the uncertainty around a point estimate. It is a range within which the true population parameter is believed to lie with a certain level of confidence. In other words, it indicates how much the point estimate can be "off" from the true population value.
03

Describe Confidence level and Confidence Interval

The confidence level is the probability that the true population parameter lies within the margin of error. It is typically expressed as a percentage, such as 95% or 99%. The confidence interval is a range that contains the point estimate and is calculated by adding and subtracting the margin of error from the point estimate.
04

Explain how to calculate Margin of Error

The margin of error can be calculated by multiplying the standard error of the point estimate with a critical value that reflects the desired confidence level. The standard error measures the variability of the point estimate, and the critical value depends on the chosen confidence level and the underlying distribution of the data (e.g., a z-score for a normal distribution or a t-score for a t-distribution).
05

Summarize the relationship between Margin of Error and Point Estimation

In summary, margin of error is a measure of uncertainty around a point estimate. It indicates how much the point estimate can deviate from the true population value, and it is used in conjunction with the confidence level to provide a confidence interval for the population parameter. By considering the margin of error, researchers and practitioners can communicate and interpret statistical results with more accuracy and understand the potential variability in their point estimates.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In developing a standard for assessing the teaching of precollege sciences in the United States, an experiment was conducted to evaluate a teacher-developed curriculum, "Biology: A Community Context" (BACC) that was standards-based, activity-oriented, and inquiry-centered. This approach was compared to the historical presentation through lecture, vocabulary, and memorized facts. Students were tested on biology concepts that featured biological knowledge and process skills in the traditional sense. The perhaps not-so-startling results from a test on biology concepts, published in The American Biology Teacher, are shown in the following table. \({ }^{11}\) $$\begin{array}{lccc} & & \text { Sample } & \text { Standard } \\\& \text { Mean } & \text { Size } & \text { Deviation } \\\\\hline \text { Pretest: All BACC Classes } & 13.38 & 372 & 5.59 \\\\\text { Pretest: All Traditional } & 14.06 & 368 & 5.45 \\\\\text { Posttest: All BACC Classes } & 18.5 & 365 & 8.03 \\\\\text { Posttest: All Traditional } & 16.5 & 298 & 6.96\end{array}$$ a. Find a \(95 \%\) confidence interval for the mean score for the posttest for all BACC classes. b. Find a \(95 \%\) confidence interval for the mean score for the posttest for all traditional classes. c. Find a \(95 \%\) confidence interval for the difference in mean scores for the posttest BACC classes and the posttest traditional classes. d. Does the confidence interval in c provide evidence that there is a real difference in the posttest BACC and traditional class scores? Explain.

The Mars twin rovers, Spirit and Opportunity, which roamed the surface of Mars several years ago, found evidence that there was once water on Mars, raising the possibility that there was once life on the planet. Do you think that the United States should pursue a program to send humans to Mars? An opinion poll conducted by the Associated Press indicated that \(49 \%\) of the 1034 adults surveyed think that we should pursue such a program. \(^{5}\) a. Estimate the true proportion of Americans who think that the United States should pursue a program to send humans to Mars. Calculate the margin of error. b. The question posed in part a was only one of many questions concerning our space program that were asked in the opinion poll. If the Associated Press wanted to report one sampling error that would be valid for the entire poll, what value should they report?

Red Meat, continued Refer to Exercise \(8.75 .\) The researcher selects two groups of 400 subjects each and collects the following sample information on the annual beef consumption now and 10 years ago: $$\begin{array}{lll} & \text { Ten Years Ago } & \text { This Year } \\\\\hline \text { Sample Mean } & 73 & 63 \\\\\text { Sample Standard Deviation } & 25 & 28\end{array}$$ a. The researcher would like to show that per-capita beef consumption has decreased in the last 10 years, so she needs to show that the difference in the averages is greater than \(0 .\) Find a \(99 \%\) lower confidence bound for the difference in the average per-capita beef consumptions for the two groups. b. What conclusions can the researcher draw using the confidence bound from part a?

Independent random samples of \(n_{1}=40\) and \(n_{2}=80\) observations were selected from binomial populations 1 and 2 , respectively. The number of successes in the two samples were \(x_{1}=17\) and \(x_{2}=23 .\) Find a \(99 \%\) confidence interval for the difference between the two binomial population proportions. Interpret this interval.

The first day of baseball comes in late March, ending in October with the World Series. Does fan support grow as the season goes on? Two CNN/USA Today/Gallup polls, one conducted in March and one in November, both involved random samples of 1001 adults aged 18 and older. In the March sample, \(45 \%\) of the adults claimed to be fans of professional baseball, while \(51 \%\) of the adults in the November sample claimed to be fans. \({ }^{13}\) a. Construct a \(99 \%\) confidence interval for the difference in the proportion of adults who claim to be fans in March versus November. b. Does the data indicate that the proportion of adults who claim to be fans increases in November, around the time of the World Series? Explain.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free