Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In a certain population, \(15 \%\) of the people have Rh-negative blood. A blood bank serving this population receives 92 blood donors on a particular day. a. What is the probability that 10 or fewer are Rh-negative? b. What is the probability that 15 to 20 (inclusive) of the donors are Rh- negative? c. What is the probability that more than 80 of the donors are Rh-positive?

Short Answer

Expert verified
Answer: To calculate the probabilities, use the binomial probability formula and sum the probabilities for each relevant value of k: 1. P(X ≤ 10) = Σ P(X = k) for k = 0 to 10 2. P(15 ≤ X ≤ 20) = Σ P(X = k) for k = 15 to 20 3. P(X ≤ 11) = Σ P(X = k) for k = 0 to 11 (Note: This is the same as having more than 80 Rh-positive donors)

Step by step solution

01

Calculate the probability that 10 or fewer are Rh-negative

We need to find the probability of having 0 to 10 Rh-negative donors. We will calculate the probabilities for each value of k (from 0 to 10) and sum them up: P(X ≤ 10) = Σ P(X = k) for k = 0 to 10
02

Calculate the probability for 15 to 20 (inclusive) of the donors are Rh-negative

We need to find the probability of having 15 to 20 Rh-negative donors. We will calculate the probabilities for each value of k (from 15 to 20) and sum them up: P(15 ≤ X ≤ 20) = Σ P(X = k) for k = 15 to 20
03

Calculate the probability that more than 80 of the donors are Rh-positive

We need to find the probability of having more than 80 Rh-positive donors, which means having fewer than 12 Rh-negative donors. We will calculate the probabilities for each value of k (from 0 to 11) and sum them up: P(X ≤ 11) = Σ P(X = k) for k = 0 to 11 Note that P(X ≤ 11) represents the probability of having 11 or fewer Rh-negative donors, which is the same as having more than 80 Rh-positive donors.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An article in American Demographics claims that more than twice as many shoppers are out shopping on the weekends than during the week. \(^{3}\) Not only that, such shoppers also spend more money on their purchases on Saturdays and Sundays! Suppose that the amount of money spent at shopping centers between 4 p.m. and 6 P.m. on Sundays has a normal distribution with mean \(\$ 85\) and with a standard deviation of \(\$ 20\). A shopper is randomly selected on a Sunday between 4 p.m. and 6 p.m. and asked about his spending patterns. a. What is the probability that he has spent more than \(\$ 95\) at the mall? b. What is the probability that he has spent between \(\$ 95\) and \(\$ 115\) at the mall? c. If two shoppers are randomly selected, what is the probability that both shoppers have spent more than \(\$ 115\) at the mall?

Consider a binomial random varible with \(n=25\) and \(p=.6 .\) Fill in the blanks below to find some probabilities using the normal approximation. a. Can we use the normal approximation? Calculate \(n p=\) _____ and \(n q=\) _____ b. Are \(n p\) and \(n q\) both greater than \(5 ?\) Yes ____ No ____ c. If the answer to part \(b\) is yes, calculate \(\mu=n p=\) ______ and \(\sigma=\sqrt{n p q}=\) ______ d. To find the probability of more than 9 successes, what values of \(x\) should be included? \(x=\) ________ e. To include the entire block of probability for the first value of \(x=\) ______, start at _______. f. Calculate \(z=\frac{x \pm .5-n p}{\sqrt{n p q}}=\) _______. g. Calculate \(P(x>9) \approx P(z>\)______) \(=1-\) _____ \(=\) ____.

A psychological introvert-extrovert test produced scores that had a normal distribution with a mean and standard deviation of 75 and \(12,\) respectively. If we wish to designate the highest \(15 \%\) as extroverts, what would be the proper score to choose as the cutoff point?

Students very often ask their professors whether they will be "curving the grades." The traditional interpretation of "curving grades" required that the grades have a normal distribution, and that the grades will be assigned in these proportions: $$ \begin{array}{l|lllll} \text { Letter Grade } & \mathrm{A} & \mathrm{B} & \mathrm{C} & \mathrm{D} & \mathrm{F} \\ \hline \text { Proportion of Students } & 10 \% & 20 \% & 40 \% & 20 \% & 10 \% \end{array} $$ a. If the average "C" grade is centered at the average grade for all students, and if we assume that the grades are normally distributed, how many standard deviations on either side of the mean will constitute the "C" grades? b. How many deviations on either side of the mean will be the cutoff points for the "B" and "D" grades?

Is a tall president better than a short one? Do Americans tend to vote for the taller of the two candidates in a presidential selection? In 33 of our presidential elections between 1856 and \(2006,\) 17 of the winners were taller than their opponents. Assume that Americans are not biased by a candidate's height and that the winner is just as likely to be taller or shorter than his opponent. Is the observed number of taller winners in the U.S. presidential elections unusual? a. Find the approximate probability of finding 17 or more of the 33 pairs in which the taller candidate wins. b. Based on your answer to part a, can you conclude that Americans might consider a candidate's height when casting their ballot?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free