Chapter 12: Problem 5
What is the difference between deterministic and probabilistic mathematical models?
Chapter 12: Problem 5
What is the difference between deterministic and probabilistic mathematical models?
All the tools & learning materials you need for study success - in one app.
Get started for freeAn agricultural experimenter, investigating the effect of the amount of nitrogen \(x\) applied in 100 pounds per acre on the yield of oats \(y\) measured in bushels per acre, collected the following data: $$ \begin{array}{l|llll} x & 1 & 2 & 3 & 4 \\ \hline y & 22 & 38 & 57 & 68 \\ & 19 & 41 & 54 & 65 \end{array} $$ a. Find the least-squares line for the data. b. Construct the ANOVA table. c. Is there sufficient evidence to indicate that the yield of oats is linearly related to the amount of nitrogen applied? Use \(\alpha=.05 .\) d. Predict the expected yield of oats with \(95 \%\) confidence if 250 pounds of nitrogen per acre are applied.e. Estimate the average increase in yield for an increase of 100 pounds of nitrogen per acre with \(99 \%\) confidence. f. Calculate \(r^{2}\) and explain its significance in terms of predicting \(y\), the yield of oats.
An experiment was conducted to observe the effect of an increase in temperature on the potency of an antibiotic. Three 1 -ounce portions of the antibiotic were stored for equal lengths of time at each of these temperatures: \(30^{\circ}, 50^{\circ}, 70^{\circ},\) and \(90^{\circ} .\) The potency readings observed at each temperature of the experimental period are listed here: $$ \begin{array}{l|l|l|l|l} \text { Potency Readings, } y & 38,43,29 & 32,26,33 & 19,27,23 & 14,19,21 \\ \hline \text { Temperature, } x & 30^{\circ} & 50^{\circ} & 70^{\circ} & 90^{\circ} \end{array} $$ Use an appropriate computer program to answer these questions: a. Find the least-squares line appropriate for these data. b. Plot the points and graph the line as a check on your calculations. c. Construct the ANOVA table for linear regression. d. If they are available, examine the diagnostic plots to check the validity of the regression assumptions. e. Estimate the change in potency for a 1 -unit change in temperature. Use a \(95 \%\) confidence interval. f. Estimate the average potency corresponding to a temperature of \(50^{\circ} .\) Use a \(95 \%\) confidence interval. g. Suppose that a batch of the antibiotic was stored at \(50^{\circ}\) for the same length of time as the experimental period. Predict the potency of the batch at the end of the storage period. Use a \(95 \%\) prediction interval.
Is there any relationship between these two variables? To find out, we randomly selected 12 people from a data set constructed by Allen Shoemaker (Journal of Statistics Education) and recorded their body temperature and heart rate. \({ }^{13}\) $$ \begin{array}{l|llllll} \text { Person } & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline \begin{array}{c} \text { Temperature } \\ \text { (degrees) } \end{array} & 96.3 & 97.4 & 98.9 & 99.0 & 99.0 & 96.8 \\ \text { Heart Rate } & 70 & 68 & 80 & 75 & 79 & 75 \\ \text { (beats per minute) } & & & & & & \end{array} $$ $$ \begin{array}{c|cccccc} \text { Person } & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline \begin{array}{c} \text { Temperature } \\ \text { (degrees) } \end{array} & 98.4 & 98.4 & 98.8 & 98.8 & 99.2 & 99.3 \\ \text { Heart Rate } & 74 & 84 & 73 & 84 & 66 & 68 \\ \text { (beats per minute) } & & & & & & \end{array} $$ a. Find the correlation coefficient \(r\), relating body temperature to heart rate. b. Is there sufficient evidence to indicate that there is a correlation between these two variables? Test at the \(5 \%\) level of significance.
Why is it that one person may tend to gain weight, even if he eats no more and exercises no less than a slim friend? Recent studies suggest that the factors that control metabolism may depend on your genetic makeup. One study involved 11 pairs of identical twins fed about 1000 calories per day more than needed to maintain initial weight. Activities were kept constant, and exercise was minimal. At the end of 100 days, the changes in body weight (in kilograms) were recorded for the 22 twins. \({ }^{16}\) Is there a significant positive correlation between the changes in body weight for the twins? Can you conclude that this similarity is caused by genetic similarities? Explain. $$ \begin{array}{rrr} \text { Pair } & \text { Twin A } & \text { Twin B } \\ \hline 1 & 4.2 & 7.3 \\ 2 & 5.5 & 6.5 \\ 3 & 7.1 & 5.7 \\ 4 & 7.0 & 7.2 \\ 5 & 7.8 & 7.9 \\ 6 & 8.2 & 6.4 \\ 7 & 8.2 & 6.5 \\ 8 & 9.1 & 8.2 \\ 9 & 11.5 & 6.0 \\ 10 & 11.2 & 13.7 \\ 11 & 13.0 & 11.0 \end{array} $$
How good are you EX1212 at estimating? To test a subject's ability to estimate sizes, he was shown 10 different objects and asked to estimate their length or diameter. The object was then measured, and the results were recorded in the table below. $$ \begin{array}{lrr} \text { Object } & \text { Estimated (inches) } & \text { Actual (inches) } \\\ \hline \text { Pencil } & 7.00 & 6.00 \\ \text { Dinner plate } & 9.50 & 10.25 \\ \text { Book 1 } & 7.50 & 6.75 \\ \text { Cell phone } & 4.00 & 4.25 \\ \text { Photograph } & 14.50 & 15.75 \\ \text { Toy } & 3.75 & 5.00 \\ \text { Belt } & 42.00 & 41.50 \\ \text { Clothespin } & 2.75 & 3.75 \\ \text { Book 2 } & 10.00 & 9.25 \\ \text { Calculator } & 3.50 & 4.75 \end{array} $$ a. Find the least-squares regression line for predicting the actual measurement as a function of the estimated measurement. b. Plot the points and the fitted line. Does the assumption of a linear relationship appear to be reasonable?
What do you think about this solution?
We value your feedback to improve our textbook solutions.