Chapter 9: Problem 8
Let \(\mathbf{A}=\left[a_{i j}\right]\) be a real symmetric matrix. Prove that \(\sum_{i} \sum_{j} a_{i j}^{2}\) is equal to the sum of the squares of the eigenvalues of \(\mathbf{A}\). Hint: If \(\boldsymbol{\Gamma}\) is an orthogonal matrix, show that \(\sum_{j} \sum_{i} a_{i j}^{2}=\operatorname{tr}\left(\mathbf{A}^{2}\right)=\operatorname{tr}\left(\boldsymbol{\Gamma}^{\prime} \mathbf{A}^{2} \boldsymbol{\Gamma}\right)=\) \(\operatorname{tr}\left[\left(\mathbf{\Gamma}^{\prime} \mathbf{A} \mathbf{\Gamma}\right)\left(\mathbf{\Gamma}^{\prime} \mathbf{A} \boldsymbol{\Gamma}\right)\right]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.