Chapter 9: Problem 4
Let \(X_{1}, X_{2}, \ldots, X_{n}\) be a random sample from a normal distribution \(N\left(\mu, \sigma^{2}\right)\). Show that $$ \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\sum_{i=2}^{n}\left(X_{i}-\bar{X}^{\prime}\right)^{2}+\frac{n-1}{n}\left(X_{1}-\bar{X}^{\prime}\right)^{2}, $$ where \(\bar{X}=\sum_{i=1}^{n} X_{i} / n\) and \(\bar{X}=\sum_{i=2}^{n} X_{i} /(n-1)\) Hint: Replace \(X_{i}-\bar{X}\) by \(\left(X_{i}-\bar{X}^{\prime}\right)-\left(X_{1}-\bar{X}\right) / n .\) Show that \(\sum_{i=2}^{n}\left(X_{i}-\bar{X}^{\prime}\right)^{2} / \sigma^{2}\) has a chi-square distribution with \(n-2\) degrees of freedom. Prove that the two terms in the right-hand member are independent. What then is the distribution of $$ \frac{[(n-1) / n]\left(X_{1}-\bar{X}^{\prime}\right)^{2}}{\sigma^{2}} ? $$