Chapter 9: Problem 10
Suppose A is a real symmetric matrix. If the eigenvalues of \(\mathbf{A}\) are only \(0 \mathrm{~s}\) and 1 s then prove that \(A\) is idempotent.
Chapter 9: Problem 10
Suppose A is a real symmetric matrix. If the eigenvalues of \(\mathbf{A}\) are only \(0 \mathrm{~s}\) and 1 s then prove that \(A\) is idempotent.
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(A_{1}, A_{2}, \ldots, A_{k}\) be the matrices of \(k>2\) quadratic forms \(Q_{1}, Q_{2}, \ldots, Q_{k}\) in the observations of a random sample of size \(n\) from a distribution that is \(N\left(0, \sigma^{2}\right)\). Prove that the pairwise independence of these forms implies that they are mutually independent. Hint: \(\quad\) Show that \(\boldsymbol{A}_{i} \boldsymbol{A}_{j}=\mathbf{0}, i \neq j\), permits \(E\left[\exp \left(t_{1} Q_{1}+t_{2} Q_{2}+\cdots+t_{k} Q_{k}\right)\right]\) to be written as a product of the mgfs of \(Q_{1}, Q_{2}, \ldots, Q_{k}\).
Suppose \(\mathbf{X}\) is an \(n \times p\) matrix with rank \(p\). (a) Show that \(\operatorname{ker}\left(\mathbf{X}^{\prime} \mathbf{X}\right)=\operatorname{ker}(\mathbf{X})\). (b) Use part (a) and the last exercise to show that if \(\mathbf{X}\) has full column rank, then \(\mathbf{X}^{\prime} \mathbf{X}\) is nonsingular.
For the two-way interaction model, \((9.5 .15)\), show that the following decomposition of sums of squares is true: $$ \begin{aligned} \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c}\left(X_{i j k}-\bar{X}_{\ldots}\right)^{2}=& b c \sum_{i=1}^{a}\left(\bar{X}_{i . .}-\bar{X}_{\ldots .}\right)^{2}+a c \sum_{j=1}^{b}\left(\bar{X}_{. j .}-\bar{X}_{\ldots}\right)^{2} \\ &+c \sum_{i=1}^{a} \sum_{j=1}^{b}\left(\bar{X}_{i j .}-\bar{X}_{i . .}-\bar{X}_{. j .}+\bar{X}_{\ldots}\right)^{2} \\ &+\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c}\left(X_{i j k}-\bar{X}_{i j .}\right)^{2} \end{aligned} $$ that is, the total sum of squares is decomposed into that due to row differences, that due to column differences, that due to interaction, and that within cells.
Let \(Q=X_{1} X_{2}-X_{3} X_{4}\), where \(X_{1}, X_{2}, X_{3}, X_{4}\) is a random sample of size 4 from a distribution that is \(N\left(0, \sigma^{2}\right)\). Show that \(Q / \sigma^{2}\) does not have a chi-square distribution. Find the mgf of \(Q / \sigma^{2}\).
Using the notation of this section, assume that the means satisfy the condition that \(\mu=\mu_{1}+(b-1) d=\mu_{2}-d=\mu_{3}-d=\cdots=\mu_{b}-d .\) That is, the last \(b-1\) means are equal but differ from the first mean \(\mu_{1}\), provided that \(d \neq 0\). Let independent random samples of size \(a\) be taken from the \(b\) normal distributions with common unknown variance \(\sigma^{2}\). (a) Show that the maximum likelihood estimators of \(\mu\) and \(d\) are \(\hat{\mu}=\bar{X}_{. .}\) and $$ \hat{d}=\frac{\sum_{j=2}^{b} \bar{X}_{. j} /(b-1)-\bar{X}_{.1}}{b} $$ (b) Using Exercise \(9.2 .4\), find \(Q_{6}\) and \(Q_{7}=c \hat{d}^{2}\) so that, when \(d=0, Q_{7} / \sigma^{2}\) is \(\chi^{2}(1)\) and $$ \sum_{i=1}^{a} \sum_{j=1}^{b}\left(X_{i j}-\bar{X}_{. .}\right)^{2}=Q_{3}+Q_{6}+Q_{7} $$ (c) Argue that the three terms in the right-hand member of part (b), once divided by \(\sigma^{2}\), are independent random variables with chi-square distributions, provided that \(d=0\). (d) The ratio \(Q_{7} /\left(Q_{3}+Q_{6}\right)\) times what constant has an \(F\) -distribution, provided that \(d=0\) ? Note that this \(F\) is really the square of the two-sample \(T\) used to test the equality of the mean of the first distribution and the common mean of the other distributions, in which the last \(b-1\) samples are combined into one.
What do you think about this solution?
We value your feedback to improve our textbook solutions.