Chapter 9: Problem 1
Show that $$ R=\frac{\sum_{1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{1}^{n}\left(X_{i}-\bar{X}\right)^{2} \sum_{1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}}=\frac{\sum_{1}^{n} X_{i} Y_{i}-n \overline{X Y}}{\sqrt{\left(\sum_{1}^{n} X_{i}^{2}-n \bar{X}^{2}\right)\left(\sum_{1}^{n} Y_{i}^{2}-n \bar{Y}^{2}\right)}} $$