Let \(\boldsymbol{X}^{\prime}=\left[X_{1}, X_{2}, \ldots, X_{n}\right]\), where
\(X_{1}, X_{2}, \ldots, X_{n}\) are observations of a random sample from a
distribution that is \(N\left(0, \sigma^{2}\right) .\) Let
\(b^{\prime}=\left[b_{1}, b_{2}, \ldots, b_{n}\right]\) be a real nonzero
vector, and let \(\boldsymbol{A}\) be a real symmetric matrix of order \(n\).
Prove that the linear form \(b^{\prime} X\) and the quadratic form
\(\boldsymbol{X}^{\prime} \boldsymbol{A} \boldsymbol{X}\) are independent if and
only if \(\boldsymbol{b}^{\prime} \boldsymbol{A}=\mathbf{0}\). Use this fact to
prove that \(\boldsymbol{b}^{\prime} \boldsymbol{X}\) and
\(\boldsymbol{X}^{\prime} \boldsymbol{A} \boldsymbol{X}\) are independent if and
only
if the two quadratic forms \(\left(\boldsymbol{b}^{\prime}
\boldsymbol{X}\right)^{2}=\boldsymbol{X}^{\prime} \boldsymbol{b b}^{\prime}
\boldsymbol{X}\) and \(\boldsymbol{X}^{\prime} \boldsymbol{A} \boldsymbol{X}\)
are independent.