Chapter 8: Problem 5
Let \(X_{1}, X_{2}, \ldots, X_{n}\) be a random sample from a distribution with
pdf \(f(x ; \theta)=\) \(\theta x^{\theta-1}, 0
Chapter 8: Problem 5
Let \(X_{1}, X_{2}, \ldots, X_{n}\) be a random sample from a distribution with
pdf \(f(x ; \theta)=\) \(\theta x^{\theta-1}, 0
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(X_{1}, X_{2}, \ldots, X_{25}\) denote a random sample of size 25 from a normal distribution \(N(\theta, 100) .\) Find a uniformly most powerful critical region of size \(\alpha=0.10\) for testing \(H_{0}: \theta=75\) against \(H_{1}: \theta>75\).
Let \(X_{1}, X_{2}, \ldots, X_{10}\) be a random sample from a distribution that is \(N\left(\theta_{1}, \theta_{2}\right)\). Find a best test of the simple hypothesis \(H_{0}: \theta_{1}=\theta_{1}^{\prime}=0, \theta_{2}=\theta_{2}^{\prime}=1\) against the alternative simple hypothesis \(H_{1}: \theta_{1}=\theta_{1}^{\prime \prime}=1, \theta_{2}=\theta_{2}^{\prime \prime}=4\).
Let \(X\) and \(Y\) have a joint bivariate normal distribution. An observation \((x, y)\) arises from the joint distribution with parameters equal to either $$ \mu_{1}^{\prime}=\mu_{2}^{\prime}=0, \quad\left(\sigma_{1}^{2}\right)^{\prime}=\left(\sigma_{2}^{2}\right)^{\prime}=1, \quad \rho^{\prime}=\frac{1}{2} $$ Ior $$ \mu_{1}^{\prime \prime}=\mu_{2}^{\prime \prime}=1, \quad\left(\sigma_{1}^{2}\right)^{\prime \prime}=4, \quad\left(\sigma_{2}^{2}\right)^{\prime \prime}=9, \quad \rho^{\prime \prime}=\frac{1}{2} \text { . } $$ Show that the classification rule involves a second-degree polynomial in \(x\) and \(y\).
Let \(X_{1}, X_{2}, \ldots, X_{10}\) denote a random sample of size 10 from a Poisson distribution with mean \(\theta .\) Show that the critical region \(C\) defined by \(\sum_{1}^{10} x_{i} \geq 3\) is a best critical region for testing \(H_{0}: \theta=0.1\) against \(H_{1}: \theta=0.5 .\) Determine, for this test, the significance level \(\alpha\) and the power at \(\theta=0.5 .\) Use the \(\mathrm{R}\). function Ppois.
If \(X_{1}, X_{2}, \ldots, X_{n}\) is a random sample from a beta distribution with parameters \(\alpha=\beta=\theta>0\), find a best critical region for testing \(H_{0}: \theta=1\) against \(H_{1}: \theta=2\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.