Chapter 8: Problem 10
Illustrative Example \(8.2 .1\) of this section dealt with a random sample of size \(n=2\) from a gamma distribution with \(\alpha=1, \beta=\theta .\) Thus the mgf of the distribution is \((1-\theta t)^{-1}, t<1 / \theta, \theta \geq 2 .\) Let \(Z=X_{1}+X_{2} .\) Show that \(Z\) has a gamma distribution with \(\alpha=2, \beta=\theta\). Express the power function \(\gamma(\theta)\) of Example 8.2.1 in terms of a single integral. Generalize this for a random sample of size \(n\).