Chapter 7: Problem 6
Let \(X_{1}, X_{2}, \ldots, X_{n}\) be a random sample from the uniform
distribution with pdf \(f\left(x ; \theta_{1}, \theta_{2}\right)=1 /\left(2
\theta_{2}\right), \theta_{1}-\theta_{2}
Chapter 7: Problem 6
Let \(X_{1}, X_{2}, \ldots, X_{n}\) be a random sample from the uniform
distribution with pdf \(f\left(x ; \theta_{1}, \theta_{2}\right)=1 /\left(2
\theta_{2}\right), \theta_{1}-\theta_{2}
All the tools & learning materials you need for study success - in one app.
Get started for freeIn the preceding exercise, given that \(E(Y)=E[K(X)]=\theta\), prove that \(Y\) is \(N(\theta, 1)\) Hint: Consider \(M^{\prime}(0)=\theta\) and solve the resulting differential equation.
Let \(X_{1}, X_{2}, \ldots, X_{n}\) be a random sample from a distribution with
pdf \(f(x ; \theta)=\theta^{2} x e^{-\theta x}, 0
Show that \(Y=|X|\) is a complete sufficient statistic for \(\theta>0\), where \(X\)
has the pdf \(f_{X}(x ; \theta)=1 /(2 \theta)\), for \(-\theta
Let \(Y_{1}
Let \(X_{1}, X_{2}, \ldots, X_{n}\) be iid \(N(0, \theta), 0<\theta<\infty\). Show that \(\sum_{1}^{n} X_{i}^{2}\) is a sufficient statistic for \(\theta\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.