Chapter 7: Problem 3
Let \(X_{1}, X_{2}, \ldots, X_{n}\) denote a random sample of size \(n\) from a
distribution with pdf \(f(x ; \theta)=\theta x^{\theta-1}, 0
Chapter 7: Problem 3
Let \(X_{1}, X_{2}, \ldots, X_{n}\) denote a random sample of size \(n\) from a
distribution with pdf \(f(x ; \theta)=\theta x^{\theta-1}, 0
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots,\left(X_{n}, Y_{n}\right)\) denote a random sample of size \(n\) from a bivariate normal distribution with means \(\mu_{1}\) and \(\mu_{2}\), positive variances \(\sigma_{1}^{2}\) and \(\sigma_{2}^{2}\), and correlation coefficient \(\rho\). Show that \(\sum_{1}^{n} X_{i}, \sum_{1}^{n} Y_{i}, \sum_{1}^{n} X_{i}^{2}, \sum_{1}^{n} Y_{i}^{2}\), and \(\sum_{1}^{n} X_{i} Y_{i}\) are joint complete sufficient statistics for the five parameters. Are \(\bar{X}=\) \(\sum_{1}^{n} X_{i} / n, \bar{Y}=\sum_{1}^{n} Y_{i} / n, S_{1}^{2}=\sum_{1}^{n}\left(X_{i}-\bar{X}\right)^{2} /(n-1), S_{2}^{2}=\sum_{1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} /(n-1)\) and \(\sum_{1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right) /(n-1) S_{1} S_{2}\) also joint complete sufficient statistics for these parameters?
Show that each of the following families is not complete by finding at least
one nonzero function \(u(x)\) such that \(E[u(X)]=0\), for all \(\theta>0\).
(a)
$$
f(x ; \theta)=\left\\{\begin{array}{ll}
\frac{1}{2 \theta} & -\theta
In a personal communication, LeRoy Folks noted that the inverse Gaussian pdf
$$
f\left(x ; \theta_{1}, \theta_{2}\right)=\left(\frac{\theta_{2}}{2 \pi
x^{3}}\right)^{1 / 2} \exp
\left[\frac{-\theta_{2}\left(x-\theta_{1}\right)^{2}}{2 \theta_{1}^{2}
x}\right], \quad 0
Let \(Y_{1}
Let \(X_{1}, X_{2}, \ldots, X_{n}\) be a random sample of size \(n\) from a geometric distribution that has \(\operatorname{pmf} f(x ; \theta)=(1-\theta)^{x} \theta, x=0,1,2, \ldots, 0<\theta<1\), zero elsewhere. Show that \(\sum_{1}^{n} X_{i}\) is a sufficient statistic for \(\theta\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.