Let \(X_{1}, X_{2}, \ldots, X_{n}\) denote a random sample from a distribution
that is \(b(1, \theta), 0 \leq \theta \leq 1 .\) Let \(Y=\sum_{1}^{n} X_{i}\) and
let \(\mathcal{L}[\theta, \delta(y)]=[\theta-\delta(y)]^{2} .\) Consider
decision functions of the form \(\delta(y)=b y\), where \(b\) does not depend upon
\(y .\) Prove that \(R(\theta, \delta)=b^{2} n \theta(1-\theta)+(b n-1)^{2}
\theta^{2} .\) Show that
$$
\max _{\theta} R(\theta, \delta)=\frac{b^{4} n^{2}}{4\left[b^{2} n-(b
n-1)^{2}\right]},
$$
provided that the value \(b\) is such that \(b^{2} n>(b n-1)^{2}\). Prove that
\(b=1 / n\) does not \(\operatorname{minimize} \max _{\theta} R(\theta, \delta)\)