Chapter 6: Problem 9
Consider the two uniform distributions with respective pdfs
$$
f\left(x ; \theta_{i}\right)=\left\\{\begin{array}{ll}
\frac{1}{2 \theta_{i}} & -\theta_{i}
Chapter 6: Problem 9
Consider the two uniform distributions with respective pdfs
$$
f\left(x ; \theta_{i}\right)=\left\\{\begin{array}{ll}
\frac{1}{2 \theta_{i}} & -\theta_{i}
All the tools & learning materials you need for study success - in one app.
Get started for freeLet the table $$ \begin{array}{c|cccccc} x & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline \text { Frequency } & 6 & 10 & 14 & 13 & 6 & 1 \end{array} $$ represent a summary of a sample of size 50 from a binomial distribution having \(n=5\). Find the mle of \(P(X \geq 3)\). For the data in the table, using the \(\mathrm{R}\) function pbinom determine the realization of the mle.
The data file beta30. rda contains 30 observations generated from a beta \((\theta, 1)\) distribution, where \(\theta=4\). The file can be downloaded at the site discussed in the Preface. (a) Obtain a histogram of the data using the argument \(\mathrm{pr}=\mathrm{T}\). Overlay the pdf of a \(\beta(4,1)\) pdf. Comment. (b) Using the results of Exercise \(6.2 .12\), compute the maximum likelihood estimate based on the data. (c) Using the confidence interval found in Part (c) of Exercise 6.2.12, compute the \(95 \%\) confidence interval for \(\theta\) based on the data. Is the confidence interval successful?
Let \(X_{1}, X_{2}, \ldots, X_{n}\) be a random sample from a distribution with pmf \(p(x ; \theta)=\theta^{x}(1-\theta)^{1-x}, x=0,1\), where \(0<\theta<1 .\) We wish to test \(H_{0}: \theta=1 / 3\) versus \(H_{1}: \theta \neq 1 / 3\). (a) Find \(\Lambda\) and \(-2 \log \Lambda\). (b) Determine the Wald-type test. (c) What is Rao's score statistic?
Rao (page 368,1973 ) considers a problem in the estimation of linkages in genetics. McLachlan and Krishnan (1997) also discuss this problem and we present their model. For our purposes, it can be described as a multinomial model with the four categories \(C_{1}, C_{2}, C_{3}\), and \(C_{4}\). For a sample of size \(n\), let \(\mathbf{X}=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)^{\prime}\) denote the observed frequencies of the four categories. Hence, \(n=\sum_{i=1}^{4} X_{i} .\) The probability model is $$ \begin{array}{|c|c|c|c|} \hline C_{1} & C_{2} & C_{3} & C_{4} \\ \hline \frac{1}{2}+\frac{1}{4} \theta & \frac{1}{4}-\frac{1}{4} \theta & \frac{1}{4}-\frac{1}{4} \theta & \frac{1}{4} \theta \\ \hline \end{array} $$ where the parameter \(\theta\) satisfies \(0 \leq \theta \leq 1\). In this exercise, we obtain the mle of \(\theta\). (a) Show that likelihood function is given by $$ L(\theta \mid \mathbf{x})=\frac{n !}{x_{1} ! x_{2} ! x_{3} ! x_{4} !}\left[\frac{1}{2}+\frac{1}{4} \theta\right]^{x_{1}}\left[\frac{1}{4}-\frac{1}{4} \theta\right]^{x_{2}+x_{3}}\left[\frac{1}{4} \theta\right]^{x_{4}} $$ (b) Show that the log of the likelihood function can be expressed as a constant (not involving parameters) plus the term $$ x_{1} \log [2+\theta]+\left[x_{2}+x_{3}\right] \log [1-\theta]+x_{4} \log \theta $$ (c) Obtain the partial derivative with respect to \(\theta\) of the last expression, set the result to 0 , and solve for the mle. (This will result in a quadratic equation that has one positive and one negative root.)
Let \(X_{1}, X_{2}, \ldots, X_{n}\) and \(Y_{1}, Y_{2}, \ldots, Y_{m}\) be independent random samples from \(N\left(\theta_{1}, \theta_{3}\right)\) and \(N\left(\theta_{2}, \theta_{4}\right)\) distributions, respectively. (a) If \(\Omega \subset R^{3}\) is defined by $$ \Omega=\left\\{\left(\theta_{1}, \theta_{2}, \theta_{3}\right):-\infty<\theta_{i}<\infty, i=1,2 ; 0<\theta_{3}=\theta_{4}<\infty\right\\} $$ find the mles of \(\theta_{1}, \theta_{2}\), and \(\theta_{3}\). (b) If \(\Omega \subset R^{2}\) is defined by $$ \Omega=\left\\{\left(\theta_{1}, \theta_{3}\right):-\infty<\theta_{1}=\theta_{2}<\infty ; 0<\theta_{3}=\theta_{4}<\infty\right\\} $$ find the mles of \(\theta_{1}\) and \(\theta_{3}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.