Chapter 6: Problem 5
Let \(X_{1}, \ldots, X_{n}\) and \(Y_{1}, \ldots, Y_{m}\) be independent random samples from the distributions \(N\left(\theta_{1}, \theta_{3}\right)\) and \(N\left(\theta_{2}, \theta_{4}\right)\), respectively. (a) Show that the likelihood ratio for testing \(H_{0}: \theta_{1}=\theta_{2}, \theta_{3}=\theta_{4}\) against all alternatives is given by $$ \begin{aligned} &\qquad\left[\sum_{1}^{n}\left(x_{i}-\bar{x}\right)^{2} / n\right]^{n / 2}\left[\sum_{1}^{m}\left(y_{i}-\bar{y}\right)^{2} / m\right]^{m / 2} \\ &\left\\{\left[\sum_{1}^{n}\left(x_{i}-u\right)^{2}+\sum_{1}^{m}\left(y_{i}-u\right)^{2}\right] /(m+n)\right\\}^{(n+m) / 2} \end{aligned} $$ (b) Show that the likelihood ratio test for testing \(H_{0}: \theta_{3}=\theta_{4}, \theta_{1}\) and \(\theta_{2}\) unspecified, against \(H_{1}: \theta_{3} \neq \theta_{4}, \theta_{1}\) and \(\theta_{2}\) unspecified, can be based on the random variable $$ F=\frac{\sum_{1}^{n}\left(X_{i}-\bar{X}\right)^{2} /(n-1)}{\sum_{1}^{m}\left(Y_{i}-\bar{Y}\right)^{2} /(m-1)} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.