Chapter 6: Problem 2
Let \(X_{1}, X_{2}, \ldots, X_{n}\) and \(Y_{1}, Y_{2}, \ldots, Y_{m}\) be independent random samples from \(N\left(\theta_{1}, \theta_{3}\right)\) and \(N\left(\theta_{2}, \theta_{4}\right)\) distributions, respectively. (a) If \(\Omega \subset R^{3}\) is defined by $$ \Omega=\left\\{\left(\theta_{1}, \theta_{2}, \theta_{3}\right):-\infty<\theta_{i}<\infty, i=1,2 ; 0<\theta_{3}=\theta_{4}<\infty\right\\} $$ find the mles of \(\theta_{1}, \theta_{2}\), and \(\theta_{3}\). (b) If \(\Omega \subset R^{2}\) is defined by $$ \Omega=\left\\{\left(\theta_{1}, \theta_{3}\right):-\infty<\theta_{1}=\theta_{2}<\infty ; 0<\theta_{3}=\theta_{4}<\infty\right\\} $$ find the mles of \(\theta_{1}\) and \(\theta_{3}\).