Chapter 4: Problem 9
Let \(X\) have a Poisson distribution with mean \(\theta\). Consider the simple hypothesis \(H_{0}: \theta=\frac{1}{2}\) and the alternative composite hypothesis \(H_{1}: \theta<\frac{1}{2} .\) Thus \(\Omega=\left\\{\theta: 0<\theta \leq \frac{1}{2}\right\\}\). Let \(X_{1}, \ldots, X_{12}\) denote a random sample of size 12 from this distribution. We reject \(H_{0}\) if and only if the observed value of \(Y=X_{1}+\cdots+X_{12} \leq 2\). Show that the following \(\mathrm{R}\) code graphs the power function of this test: theta=seq \((.1, .5, .05) ;\) gam=ppois \((2\), theta*12 \()\) plot (gam "theta, pch=" ", xlab=expression(theta), ylab=expression(gamma)) lines (gam "theta) Run the code. Determine the significance level from the plot.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.