Chapter 4: Problem 8
Let \(Y_{1}
Chapter 4: Problem 8
Let \(Y_{1}
All the tools & learning materials you need for study success - in one app.
Get started for freeThis data set was downloaded from the site http://lib.stat.cmu.edu/DASL/ at Carnegie-Melon university. The original source is Willerman et al. (1991). The data consist of a sample of brain information recorded on 40 college students. The variables include gender, height, weight, three IQ measurements, and Magnetic Resonance Imaging (MRI) counts, as a determination of brain size. The data are in the rda file braindata. rda at the sites referenced in the Preface. For this exercise, consider the MRI counts. (a) Load the rda file braindata.rda and print the MRI data, using the code: \(\mathrm{mri}<-\) braindata \([, 7] ;\) print(mri). (b) Obtain a histogram of the data, hist \((m r i, p r=T)\). Comment on the shape. (c) Overlay the default density estimator, lines (density(mri)). Comment on the shape. 4.1.10. This data set was downloaded from the site http://lib.stat.cmu.edu/DASL/ at Carnegie-Melon university. The original source is Willerman et al. (1991). The data consist of a sample of brain information recorded on 40 college students. The variables include gender, height, weight, three IQ measurements, and Magnetic Resonance Imaging (MRI) counts, as a determination of brain size. The data are in the rda file braindata. rda at the sites referenced in the Preface. For this exercise, consider the MRI counts. (a) Load the rda file braindata.rda and print the MRI data, using the code: \(\mathrm{mri}<-\) braindata \([, 7] ;\) print(mri). (b) Obtain a histogram of the data, hist \((m r i, p r=T)\). Comment on the shape. (c) Overlay the default density estimator, lines (density(mri)). Comment on the shape.
It is known that a random variable \(X\) has a Poisson distribution with parameter \(\mu\). A sample of 200 observations from this distribution has a mean equal to \(3.4\). Construct an approximate \(90 \%\) confidence interval for \(\mu\).
In Exercise \(4.2 .27\), in finding a confidence interval for the ratio of the variances of two normal distributions, we used a statistic \(S_{1}^{2} / S_{2}^{2}\), which has an \(F\) distribution when those two variances are equal. If we denote that statistic by \(F\), we can test \(H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}\) against \(H_{1}: \sigma_{1}^{2}>\sigma_{2}^{2}\) using the critical region \(F \geq c\). If \(n=13, m=11\), and \(\alpha=0.05\), find \(c .\)
Let \(Y_{1}
It is proposed to fit the Poisson distribution to the following data:
\begin{tabular}{c|ccccc}
\(x\) & 0 & 1 & 2 & 3 & \(3
What do you think about this solution?
We value your feedback to improve our textbook solutions.