Chapter 4: Problem 6
Verzani (2014), page 323 , presented a data set concerning the effect that different dosages of the drug AZT have on patients with HIV. The responses we consider are the p24 antigen levels of HIV patients after their treatment with AZT. Of the \(20 \mathrm{HIV}\) patients in the study, 10 were randomly assign the dosage of \(300 \mathrm{mg}\) of AZT while the other 10 were assigned \(600 \mathrm{mg}\). The hypotheses of interest are \(H_{0}: \Delta=0\) versus \(H_{1}: \Delta \neq 0\) where \(\Delta=\mu_{600}-\mu_{300}\) and \(\mu_{600}\) and \(\mu_{300}\) are the true mean p24 antigen levels under dosages of \(600 \mathrm{mg}\) and \(300 \mathrm{mg}\) of AZT, respectively. The data are given below but are also available in the file aztdoses. rda. \begin{tabular}{|l|llllllllll|} \hline \(300 \mathrm{mg}\) & 284 & 279 & 289 & 292 & 287 & 295 & 285 & 279 & 306 & 298 \\ \hline \(600 \mathrm{mg}\) & 298 & 307 & 297 & 279 & 291 & 335 & 299 & 300 & 306 & 291 \\ \hline \end{tabular} (a) Obtain comparison boxplots of the data. Identify outliers by patient. Comment on the comparison plots. (b) Compute the two-sample \(t\) -test and obtain the \(p\) -value. Are the data significant at the \(5 \%\) level of significance? (c) Obtain a point estimate of \(\Delta\) and a \(95 \%\) confidence interval for it. (d) Conclude in terms of the problem.