Chapter 4: Problem 5
Let \(X_{1}, X_{2}\) be a random sample of size \(n=2\) from the distribution
having pdf \(f(x ; \theta)=(1 / \theta) e^{-x / \theta}, 0
Chapter 4: Problem 5
Let \(X_{1}, X_{2}\) be a random sample of size \(n=2\) from the distribution
having pdf \(f(x ; \theta)=(1 / \theta) e^{-x / \theta}, 0
All the tools & learning materials you need for study success - in one app.
Get started for freeCompute \(P\left(Y_{3}<\xi_{0.5}
Let \(X\) have a binomial distribution with the number of trials \(n=10\) and with \(p\) either \(1 / 4\) or \(1 / 2 .\) The simple hypothesis \(H_{0}: p=\frac{1}{2}\) is rejected, and the alternative simple hypothesis \(H_{1}: p=\frac{1}{4}\) is accepted, if the observed value of \(X_{1}\), a random sample of size 1 , is less than or equal to 3 . Find the significance level and the power of the test.
Let \(f(x)=\frac{1}{6}, x=1,2,3,4,5,6\), zero elsewhere, be the pmf of a distribution of the discrete type. Show that the pmf of the smallest observation of a random sample of size 5 from this distribution is $$ g_{1}\left(y_{1}\right)=\left(\frac{7-y_{1}}{6}\right)^{5}-\left(\frac{6-y_{1}}{6}\right)^{5}, \quad y_{1}=1,2, \ldots, 6 $$ zero elsewhere. Note that in this exercise the random sample is from a distribution of the discrete type. All formulas in the text were derived under the assumption that the random sample is from a distribution of the continuous type and are not applicable. Why?
The data set on Scottish schoolchildren discussed in Example 4.1.5 included the eye colors of the children also. The frequencies of their eye colors are \(\begin{array}{lccc}\text { Blue } & \text { Light } & \text { Medium } & \text { Dark } \\ 2978 & 6697 & 7511 & 5175\end{array}\) Use these frequencies to obtain a bar chart and an estimate of the associated pmf.
Verzani (2014), page 323 , presented a data set concerning the effect that different dosages of the drug AZT have on patients with HIV. The responses we consider are the p24 antigen levels of HIV patients after their treatment with AZT. Of the \(20 \mathrm{HIV}\) patients in the study, 10 were randomly assign the dosage of \(300 \mathrm{mg}\) of AZT while the other 10 were assigned \(600 \mathrm{mg}\). The hypotheses of interest are \(H_{0}: \Delta=0\) versus \(H_{1}: \Delta \neq 0\) where \(\Delta=\mu_{600}-\mu_{300}\) and \(\mu_{600}\) and \(\mu_{300}\) are the true mean p24 antigen levels under dosages of \(600 \mathrm{mg}\) and \(300 \mathrm{mg}\) of AZT, respectively. The data are given below but are also available in the file aztdoses. rda. \begin{tabular}{|l|llllllllll|} \hline \(300 \mathrm{mg}\) & 284 & 279 & 289 & 292 & 287 & 295 & 285 & 279 & 306 & 298 \\ \hline \(600 \mathrm{mg}\) & 298 & 307 & 297 & 279 & 291 & 335 & 299 & 300 & 306 & 291 \\ \hline \end{tabular} (a) Obtain comparison boxplots of the data. Identify outliers by patient. Comment on the comparison plots. (b) Compute the two-sample \(t\) -test and obtain the \(p\) -value. Are the data significant at the \(5 \%\) level of significance? (c) Obtain a point estimate of \(\Delta\) and a \(95 \%\) confidence interval for it. (d) Conclude in terms of the problem.
What do you think about this solution?
We value your feedback to improve our textbook solutions.