Chapter 4: Problem 20
For \(\alpha>0\) and \(\beta>0\), consider the following accept-reject algorithm: 1\. Generate \(U_{1}\) and \(U_{2}\) iid uniform \((0,1)\) random variables. Set \(V_{1}=U_{1}^{1 / \alpha}\) and \(V_{2}=U_{2}^{1 / \beta}\) 2\. Set \(W=V_{1}+V_{2}\). If \(W \leq 1\), set \(X=V_{1} / W\); else go to step 1 . 3\. Deliver \(X\). Show that \(X\) has a beta distribution with parameters \(\alpha\) and \(\beta,(3.3 .9) .\) See Kennedy and Gentle (1980).