Frequently, the bootstrap percentile confidence interval can be improved if
the estimator \(\widehat{\theta}\) is standardized by an estimate of scale. To
illustrate this, consider a bootstrap for a confidence interval for the mean.
Let \(x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\) be a bootstrap sample drawn from
the sample \(x_{1}, x_{2}, \ldots, x_{n} .\) Consider the bootstrap pivot
[analog of \((4.9 .13)]:\)
$$
t^{*}=\frac{\bar{x}^{*}-\bar{x}}{s^{*} / \sqrt{n}}
$$
where \(\bar{x}^{*}=n^{-1} \sum_{i=1}^{n} x_{i}^{*}\) and
$$
s^{* 2}=(n-1)^{-1} \sum_{i=1}^{n}\left(x_{i}^{*}-\bar{x}^{*}\right)^{2} .
$$
(a) Rewrite the percentile bootstrap confidence interval algorithm using the
mean and collecting \(t_{j}^{*}\) for \(j=1,2, \ldots, B\). Form the interval
$$
\left(\bar{x}-t^{*(1-\alpha / 2)} \frac{s}{\sqrt{n}}, \bar{x}-t^{*(\alpha /
2)} \frac{s}{\sqrt{n}}\right)
$$
where \(t^{*(\gamma)}=t_{([\gamma * B])}^{*} ;\) that is, order the \(t_{j}^{*}
\mathrm{~s}\) and pick off the quantiles.
(b) Rewrite the \(\mathrm{R}\) program percentciboot.s and then use it to find a
\(90 \%\) confidence interval for \(\mu\) for the data in Example 4.9.3. Use 3000
bootstraps.
(c) Compare your confidence interval in the last part with the nonstandardized
bootstrap confidence interval based on the program percentciboot.s.