Chapter 3: Problem 8
For this exercise, the reader must have access to a statistical package that obtains the binomial distribution. Hints are given for \(\mathrm{R}\) code, but other packages can be used too. (a) Obtain the plot of the pmf for the \(b(15,0.2)\) distribution. Using \(\mathrm{R}\), the following commands return the plot: \(x<-0: 15 ;\) plot \(\left(\operatorname{dbinom}(x, 15, .2)^{-} x\right)\) (b) Repeat part (a) for the binomial distributions with \(n=15\) and with \(p=\) \(0.10,0.20, \ldots, 0.90 .\) Comment on the shapes of the pmf's as \(p\) increases. Use the following \(\mathrm{R}\) segment: \(\mathrm{x}<-0: 15 ; \quad\) par \((\mathrm{mfrow}=\mathrm{c}(3,3)) ; \mathrm{p}<-1: 9 / 10\) for \((j\) in \(p)\left\\{\right.\) plot \(\left(\right.\) dbinom \(\left.(x, 15, j)^{\sim} x\right) ;\) title(paste \(\left.\left.(" p=", j)\right)\right\\}\) (c) Let \(Y=\frac{X}{n}\), where \(X\) has a \(b(n, 0.05)\) distribution. Obtain the plots of the pmfs of \(Y\) for \(n=10,20,50,200 .\) Comment on the plots (what do the plots seem to be converging to as \(n\) gets large? ).