Chapter 3: Problem 5
Show that $$ \int_{\mu}^{\infty} \frac{1}{\Gamma(k)} z^{k-1} e^{-z} d z=\sum_{x=0}^{k-1} \frac{\mu^{x} e^{-\mu}}{x !}, \quad k=1,2,3, \ldots $$ This demonstrates the relationship between the cdfs of the gamma and Poisson distributions. Hint: Either integrate by parts \(k-1\) times or obtain the "antiderivative" by showing that $$ \frac{d}{d z}\left[-e^{-z} \sum_{j=0}^{k-1} \frac{\Gamma(k)}{(k-j-1) !} z^{k-j-1}\right]=z^{k-1} e^{-z} $$