Chapter 3: Problem 27
Let \(X\) have a geometric distribution. Show that $$ P(X \geq k+j \mid X \geq k)=P(X \geq j) $$ where \(k\) and \(j\) are nonnegative integers. Note that we sometimes say in this situation that \(X\) is memoryless.
Chapter 3: Problem 27
Let \(X\) have a geometric distribution. Show that $$ P(X \geq k+j \mid X \geq k)=P(X \geq j) $$ where \(k\) and \(j\) are nonnegative integers. Note that we sometimes say in this situation that \(X\) is memoryless.
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(X\) have an exponential distribution.
(a) For \(x>0\) and \(y>0\), show that
$$
P(X>x+y \mid X>x)=P(X>y)
$$
Hence, the exponential distribution has the memoryless property. Recall from
Exercise 3.1.9 that the discrete geometric distribution has a similar
property.
(b) Let \(F(x)\) be the cdf of a continuous random variable \(Y\). Assume that
\(F(0)=0\) and \(0
Show that the graph of a pdf \(N\left(\mu, \sigma^{2}\right)\) has points of inflection at \(x=\mu-\sigma\) and \(x=\mu+\sigma\).
Consider a shipment of 1000 items into a factory. Suppose the factory can tolerate about \(5 \%\) defective items. Let \(X\) be the number of defective items in a sample without replacement of size \(n=10 .\) Suppose the factory returns the shipment if \(X \geq 2\). (a) Obtain the probability that the factory returns a shipment of items that has \(5 \%\) defective items. (b) Suppose the shipment has \(10 \%\) defective items. Obtain the probability that the factory returns such a shipment. (c) Obtain approximations to the probabilities in parts (a) and (b) using appropriate binomial distributions. Note: If you do not have access to a computer package with a hypergeometric command, obtain the answer to (c) only. This is what would have been done in practice 20 years ago. If you have access to \(\mathrm{R}\), then the command dhyper \((\mathrm{x}, \mathrm{D}, \mathrm{N}-\mathrm{D}, \mathrm{n})\) returns the probability in expression (3.1.7).
Let \(X\) be \(N(0,1)\). Use the moment generating function technique to show that \(Y=X^{2}\) is \(\chi^{2}(1)\). Hint: Evaluate the integral that represents \(E\left(e^{t X^{2}}\right)\) by writing \(w=x \sqrt{1-2 t}\), \(t<\frac{1}{2}\)
Let \(X\) and \(Y\) be independent random variables, each with a distribution that is \(N(0,1)\). Let \(Z=X+Y\). Find the integral that represents the cdf \(G(z)=\) \(P(X+Y \leq z)\) of \(Z .\) Determine the pdf of \(Z\). Hint: We have that \(G(z)=\int_{-\infty}^{\infty} H(x, z) d x\), where $$ H(x, z)=\int_{-\infty}^{z-x} \frac{1}{2 \pi} \exp \left[-\left(x^{2}+y^{2}\right) / 2\right] d y $$ Find \(G^{\prime}(z)\) by evaluating \(\int_{-\infty}^{\infty}[\partial H(x, z) / \partial z] d x\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.