Chapter 3: Problem 18
One way of estimating the number of fish in a lake is the following capturerecapture sampling scheme. Suppose there are \(N\) fish in the lake where \(N\) is unknown. A specified number of fish \(T\) are captured, tagged, and released back to the lake. Then at a specified time and for a specified positive integer \(r\), fish are captured until the \(r t h\) tagged fish is caught. The random variable of interest is \(Y\) the number of nontagged fish caught. (a) What is the distribution of \(Y ?\) Identify all parameters. (b) What is \(E(Y)\) and the \(\operatorname{Var}(Y)\) ? (c) The method of moment estimate of \(N\) is to set \(Y\) equal to the expression for \(E(Y)\) and solve this equation for \(N .\) Call the solution \(\hat{N}\). Determine \(\hat{N}\). (d) Determine the mean and variance of \(\hat{N}\).