Let
$$
p\left(x_{1}, x_{2}\right)=\left(\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right)\left(\frac{1}{2}\right)^{x_{1}}\left(\frac{x_{1}}{15}\right),
\begin{aligned}
&x_{2}=0,1, \ldots, x_{1} \\
&x_{1}=1,2,3,4,5
\end{aligned}
$$
zero elsewhere, be the joint pmf of \(X_{1}\) and \(X_{2}\). Determine
(a) \(E\left(X_{2}\right)\).
(b) \(u\left(x_{1}\right)=E\left(X_{2} \mid x_{1}\right)\).
(c) \(E\left[u\left(X_{1}\right)\right]\).
Compare the answers of parts (a) and (c). Hint: Note that
\(E\left(X_{2}\right)=\sum_{x_{1}=1}^{5} \sum_{x_{2}=0}^{x_{1}} x_{2}
p\left(x_{1}, x_{2}\right)\)