Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Compute the measures of skewness and kurtosis of a distribution which is \(N\left(\mu, \sigma^{2}\right) .\) See Exercises \(1.9 .14\) and \(1.9 .15\) for the definitions of skewness and kurtosis, respectively.

Short Answer

Expert verified
The skewness of the given normal distribution is 0 and the kurtosis is 3.

Step by step solution

01

Definition of Skewness for a Normal Distribution

Skewness of a normal distribution is formulated as: \( Skewness = E\left(\dfrac{X - \mu}{\sigma}\right)^3 \). However, by definition, a normal distribution is symmetric about the mean. This means that it has zero skewness.
02

Definition of Kurtosis for a Normal Distribution

Kurtosis of a distribution is the expectation of the standardized random variable to the power of 4: \( Kurtosis = E\left(\dfrac{X - \mu}{\sigma}\right)^4 \). For a normal distribution, this is equal to 3.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose \(\mathbf{X}\) has a multivariate normal distribution with mean 0 and covariance matrix $$ \boldsymbol{\Sigma}=\left[\begin{array}{llll} 283 & 215 & 277 & 208 \\ 215 & 213 & 217 & 153 \\ 277 & 217 & 336 & 236 \\ 208 & 153 & 236 & 194 \end{array}\right] $$ (a) Find the total variation of \(\mathbf{X}\). (b) Find the principal component vector Y. (c) Show that the first principal component accounts for \(90 \%\) of the total variation. (d) Show that the first principal component \(Y_{1}\) is essentially a rescaled \(\bar{X}\). Determine the variance of \((1 / 2) \bar{X}\) and compare it to that of \(Y_{1}\). Note that the \(\mathrm{R}\) command eigen(amat) obtains the spectral decomposition of the matrix amat.

The approximation discussed in Exercise \(3.2 .8\) can be made precise in the following way. Suppose \(X_{n}\) is binomial with the parameters \(n\) and \(p=\lambda / n\), for a given \(\lambda>0 .\) Let \(Y\) be Poisson with mean \(\lambda\). Show that \(P\left(X_{n}=k\right) \rightarrow P(Y=k)\), as \(n \rightarrow \infty\), for an arbitrary but fixed value of \(k\). Hint: First show that: $$ P\left(X_{n}=k\right)=\frac{\lambda^{k}}{k !}\left[\frac{n(n-1) \cdots(n-k+1)}{n^{k}}\left(1-\frac{\lambda}{n}\right)^{-k}\right]\left(1-\frac{\lambda}{n}\right)^{n} $$

Let \(f(x)\) and \(F(x)\) be the pdf and the cdf, respectively, of a distribution of the continuous type such that \(f^{\prime}(x)\) exists for all \(x\). Let the mean of the truncated distribution that has pdf \(g(y)=f(y) / F(b),-\infty

Let \(X\) have a Poisson distribution with parameter \(m\). If \(m\) is an experimental value of a random variable having a gamma distribution with \(\alpha=2\) and \(\beta=1\), compute \(P(X=0,1,2)\) Hint: Find an expression that represents the joint distribution of \(X\) and \(m\). Then integrate out \(m\) to find the marginal distribution of \(X\).

Let \(X\) be a random variable such that \(E\left(X^{m}\right)=(m+1) ! 2^{m}, m=1,2,3, \ldots\). Determine the mgf and the distribution of \(X\). Hint: Write out the Taylor series \(^{6}\) of the mgf.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free