Chapter 3: Problem 1
Let \(X\) and \(Y\) have a bivariate normal distribution with respective
parameters \(\mu_{x}=2.8, \mu_{y}=110, \sigma_{x}^{2}=0.16,
\sigma_{y}^{2}=100\), and \(\rho=0.6 .\) Using \(R\), compute:
(a) \(P(106
Chapter 3: Problem 1
Let \(X\) and \(Y\) have a bivariate normal distribution with respective
parameters \(\mu_{x}=2.8, \mu_{y}=110, \sigma_{x}^{2}=0.16,
\sigma_{y}^{2}=100\), and \(\rho=0.6 .\) Using \(R\), compute:
(a) \(P(106
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that the graph of a pdf \(N\left(\mu, \sigma^{2}\right)\) has points of inflection at \(x=\mu-\sigma\) and \(x=\mu+\sigma\).
Three fair dice are cast. In 10 independent casts, let \(X\) be the number of times all three faces are alike and let \(Y\) be the number of times only two faces are alike. Find the joint \(\mathrm{pmf}\) of \(X\) and \(Y\) and compute \(E(6 X Y)\).
Let \(Y_{1}, \ldots, Y_{k}\) have a Dirichlet distribution with parameters \(\alpha_{1}, \ldots, \alpha_{k}, \alpha_{k+1}\). (a) Show that \(Y_{1}\) has a beta distribution with parameters \(\alpha=\alpha_{1}\) and \(\beta=\alpha_{2}+\) \(\cdots+\alpha_{k+1}\) (b) Show that \(Y_{1}+\cdots+Y_{r}, r \leq k\), has a beta distribution with parameters \(\alpha=\alpha_{1}+\cdots+\alpha_{r}\) and \(\beta=\alpha_{r+1}+\cdots+\alpha_{k+1}\) (c) Show that \(Y_{1}+Y_{2}, Y_{3}+Y_{4}, Y_{5}, \ldots, Y_{k}, k \geq 5\), have a Dirichlet distribution with parameters \(\alpha_{1}+\alpha_{2}, \alpha_{3}+\alpha_{4}, \alpha_{5}, \ldots, \alpha_{k}, \alpha_{k+1}\) Hint: Recall the definition of \(Y_{i}\) in Example \(3.3 .6\) and use the fact that the sum of several independent gamma variables with \(\beta=1\) is a gamma variable.
Investigate the probabilities of an "outlier" for a contaminated normal random variable and a normal random variable. Specifically, determine the probability of observing the event \(\\{|X| \geq 2\\}\) for the following random variables (use the \(\mathrm{R}\) function pcn for the contaminated normals): (a) \(X\) has a standard normal distribution. (b) \(X\) has a contaminated normal distribution with cdf \((3.4 .15)\), where \(\epsilon=0.15\) and \(\sigma_{c}=10\). (c) \(X\) has a contaminated normal distribution with cdf \((3.4 .15)\), where \(\epsilon=0.15\) and \(\sigma_{c}=20\). (d) \(X\) has a contaminated normal distribution with cdf \((3.4 .15)\), where \(\epsilon=0.25\) and \(\sigma_{c}=20\).
Let \(X\) be \(N\left(\mu, \sigma^{2}\right)\) so that \(P(X<89)=0.90\) and \(P(X<94)=0.95\). Find \(\mu\) and \(\sigma^{2}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.