Chapter 11: Problem 9
Let \(\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}\) be a random sample from a multivariate normal normal distribution with mean vector \(\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{k}\right)^{\prime}\) and known positive definite covariance matrix \(\mathbf{\Sigma}\). Let \(\overline{\mathbf{X}}\) be the mean vector of the random sample. Suppose that \(\mu\) has a prior multivariate normal distribution with mean \(\boldsymbol{\mu}_{0}\) and positive definite covariance matrix \(\boldsymbol{\Sigma}_{0}\). Find the posterior distribution of \(\mu\), given \(\overline{\mathbf{X}}=\overline{\mathbf{x}}\). Then find the Bayes estimate \(E(\boldsymbol{\mu} \mid \overline{\mathbf{X}}=\overline{\mathbf{x}})\).