Let \(X_{1}, X_{2}, \ldots, X_{n}\) denote a random sample from a Poisson
distribution with mean \(\theta, 0<\theta<\infty\). Let \(Y=\sum_{1}^{n} X_{i} .\)
Use the loss function \(\mathcal{L}[\theta, \delta(y)]=\)
\([\theta-\delta(y)]^{2}\). Let \(\theta\) be an observed value of the random
variable \(\Theta\). If \(\Theta\) has the prior \(\operatorname{pdf}
h(\theta)=\theta^{\alpha-1} e^{-\theta / \beta} / \Gamma(\alpha)
\beta^{\alpha}\), for \(0<\theta<\infty\), zero elsewhere, where \(\alpha>0,
\beta>0\)
are known numbers, find the Bayes solution \(\delta(y)\) for a point estimate
for \(\theta\).