Chapter 11: Problem 5
Consider the Bayes model \(X_{i} \mid \theta, i=1,2, \ldots, n \sim\) iid with distribution \(\Gamma(1, \theta), \theta>0\) $$ \Theta \sim h(\theta) \propto \frac{1}{\theta} $$ (a) Show that \(h(\theta)\) is in the class of Jeffreys' priors. (b) Show that the posterior pdf is $$ h(\theta \mid y) \propto\left(\frac{1}{\theta}\right)^{n+2-1} e^{-y / \theta}, $$ where \(y=\sum_{i=1}^{n} x_{i}\) (c) Show that if \(\tau=\theta^{-1}\), then the posterior \(k(\tau \mid y)\) is the pdf of a \(\Gamma(n, 1 / y)\) distribution. (d) Determine the posterior pdf of \(2 y \tau\). Use it to obtain a \((1-\alpha) 100 \%\) credible interval for \(\theta\). (e) Use the posterior pdf in part (d) to determine a Bayesian test for the hypotheses \(H_{0}: \theta \geq \theta_{0}\) versus \(H_{1}: \theta<\theta_{0}\), where \(\theta_{0}\) is specified.