Consider the Bayes model
\(X_{i} \mid \theta, i=1,2, \ldots, n \sim\) iid with distribution \(\Gamma(1,
\theta), \theta>0\)
$$
\Theta \sim h(\theta) \propto \frac{1}{\theta}
$$
(a) Show that \(h(\theta)\) is in the class of Jeffreys' priors.
(b) Show that the posterior pdf is
$$
h(\theta \mid y) \propto\left(\frac{1}{\theta}\right)^{n+2-1} e^{-y / \theta},
$$
where \(y=\sum_{i=1}^{n} x_{i}\)
(c) Show that if \(\tau=\theta^{-1}\), then the posterior \(k(\tau \mid y)\) is
the pdf of a \(\Gamma(n, 1 / y)\) distribution.
(d) Determine the posterior pdf of \(2 y \tau\). Use it to obtain a \((1-\alpha)
100 \%\) credible interval for \(\theta\).
(e) Use the posterior pdf in part (d) to determine a Bayesian test for the
hypotheses \(H_{0}: \theta \geq \theta_{0}\) versus \(H_{1}: \theta<\theta_{0}\),
where \(\theta_{0}\) is specified.