Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(X\) be a continuous random variable with cdf \(F(x)\). Suppose \(Y=X+\Delta\), where \(\Delta>0\). Show that \(Y\) is stochastically larger than \(X\).

Short Answer

Expert verified
Yes, \(Y = X + \Delta\), where \(\Delta > 0\), is stochastically larger than \(X\) as its cumulative distribution function \(F_Y(y)\) lies everywhere to the right of the cumulative distribution function \(F_X(x)\) for all \(x\) and \(y\) in their domain.

Step by step solution

01

Remember the definition of a CDF

The cumulative distribution function (CDF) of a random variable \(X\) is defined as \(F(x) = P(X \leq x)\). It gives the probability that the random variable \(X\) takes a value less than or equal to \(x\).
02

Translate Y in terms of X

Given \(Y = X + \Delta\), we can express this in terms of \(X\) as \(X = Y - \Delta\). This will help us connect the CDFs of \(Y\) and \(X\).
03

Express CDF of Y

Express the CDF of \(Y\) in terms of the CDF of \(X\). We have \(F_Y(y) = P(Y \leq y) = P(X + \Delta \leq y) = P(X \leq y - \Delta) = F_X(y-\Delta)\). Notice here \(F_Y(y)\) is equivalent to shifting \(F_X(x)\) to the right by \(\Delta\) units.
04

Compare the CDFs of X and Y

Because \(\Delta > 0\), it is clear that \(Y = X + \Delta\) implies that \(F_Y(y) = F_X(y-\Delta) \leq F_X(x)\) for all \(x\) and \(y\). Thus, \(Y\) is stochastically larger than \(X\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose \(X\) is a random variable with mean 0 and variance \(\sigma^{2}\). Recall that the function \(F_{x, \epsilon}(t)\) is the cdf of the random variable \(U=I_{1-e} X+\left[1-I_{1-e}\right] W\), where \(X, I_{1-\epsilon}\), and \(W\) are independent random variables, \(X\) has cdf \(F_{X}(t), \underline{W}\) has cdf \(\Delta_{x}(t)\), and \(I_{1-\epsilon}\) has a binomial \((1,1-\epsilon)\) distribution. Define the functional \(\operatorname{Var}\left(F_{X}\right)=\operatorname{Var}(X)=\sigma^{2}\). Note that the functional at the contaminated \(\operatorname{cdf} F_{x, c}(t)\) has the variance of the random variable \(U=I_{1-e} X+\left[1-I_{1-\epsilon}\right] W\). To derive the influence function of the variance, perform the following steps: (a) Show that \(E(U)=\epsilon x\). (b) Show that \(\operatorname{Var}(U)=(1-\epsilon) \sigma^{2}+\epsilon x^{2}-\epsilon^{2} x^{2}\) (c) Obtain the partial derivative of the right side of this equation with respect to \(\epsilon\). This is the influence function. Hint: Because \(I_{1-e}\) is a Bernoulli random variable, \(I_{1-\epsilon}^{2}=I_{1-e} .\) Why?

Consider the rank correlation coefficient given by \(r_{q c}\) in part (c) of Exercise 10.8.5. Let \(Q_{2 X}\) and \(Q_{2 Y}\) denote the medians of the samples \(X_{1}, \ldots, X_{n}\) and \(Y_{1}, \ldots, Y_{n}\), respectively. Now consider the four quadrants: $$ \begin{aligned} I &=\left\\{(x, y): x>Q_{2 X}, y>Q_{2 Y}\right\\} \\ I I &=\left\\{(x, y): xQ_{2 Y}\right\\} \\ I I I &=\left\\{(x, y): xQ_{2 X}, y

Let \(X_{1}, X_{2}, \ldots, X_{n}\) be a random sample that follows the location model (10.2.1). In this exercise we want to compare the sign tests and \(t\) -test of the hypotheses \((10.2 .2) ;\) so we assume the random errors \(\varepsilon_{i}\) are symmetrically distributed about \(0 .\) Let \(\sigma^{2}=\operatorname{Var}\left(\varepsilon_{i}\right) .\) Hence the mean and the median are the same for this location model. Assume, also, that \(\theta_{0}=0 .\) Consider the large sample version of the \(t\) -test, which rejects \(H_{0}\) in favor of \(H_{1}\) if \(\bar{X} /(\sigma / \sqrt{n})>z_{\alpha}\). (a) Obtain the power function, \(\gamma_{t}(\theta)\), of the large sample version of the \(t\) -test. (b) Show that \(\gamma_{t}(\theta)\) is nondecreasing in \(\theta\). (c) Show that \(\gamma_{t}\left(\theta_{n}\right) \rightarrow 1-\Phi\left(z_{\alpha}-\sigma \theta^{*}\right)\), under the sequence of local alternatives \((10.2 .13)\) (d) Based on part (c), obtain the sample size determination for the \(t\) -test to detect \(\theta^{*}\) with approximate power \(\gamma^{*}\). (e) Derive the \(\operatorname{ARE}(S, t)\) given in \((10.2 .27)\).

Prove that a pdf (or pmf) \(f(x)\) is symmetric about 0 if and only if its mgf is symmetric about 0, provided the mgf exists.

Suppose the random variable \(e\) has cdf \(F(t)\). Let \(\varphi(u)=\sqrt{12}[u-(1 / 2)]\), \(0

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free