Chapter 10: Problem 4
Let \(X\) be a random variable with cdf \(F(x)\) and let \(T(F)\) be a functional. We say that \(T(F)\) is a scale functional if it satisfies the three properties $$ \text { (i) } T\left(F_{a X}\right)=a T\left(F_{X}\right), \text { for } a>0 $$ (ii) \(T\left(F_{X+b}\right)=T\left(F_{X}\right), \quad\) for all \(b\) $$ \text { (iii) } T\left(F_{-X}\right)=T\left(F_{X}\right) \text { . } $$ Show that the following functionals are scale functionals. (a) The standard deviation, \(T\left(F_{X}\right)=(\operatorname{Var}(X))^{1 / 2}\). (b) The interquartile range, \(T\left(F_{X}\right)=F_{X}^{-1}(3 / 4)-F_{X}^{-1}(1 / 4)\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.