Chapter 10: Problem 15
Optimal signed-rank based methods also exist for the one-sample problem. In this exercise, we briefly discuss these methods. Let \(X_{1}, X_{2}, \ldots, X_{n}\) follow the location model $$ X_{i}=\theta+e_{i}, \quad(10.5 .39) $$ where \(e_{1}, e_{2}, \ldots, e_{n}\) are iid with pdf \(f(x)\), which is symmetric about \(0 ;\) i.e., \(f(-x)=\) \(f(x)\) (a) Show that under symmetry the optimal two-sample score function \((10.5 .26)\) satisfies $$ \varphi_{f}(1-u)=-\varphi_{f}(u), \quad 00 $$ Our decision rule for the statistic \(W_{\varphi^{+}}\) is to reject \(H_{0}\) in favor of \(H_{1}\) if \(W_{\varphi^{+}} \geq\) \(k\), for some \(k\). Write \(W_{\varphi^{+}}\) in terms of the anti-ranks, \((10.3 .5) .\) Show that \(W_{\varphi^{+}}\) is distribution-free under \(H_{0}\). (f) Determine the mean and variance of \(W_{\varphi^{+}}\) under \(H_{0}\). (g) Assuming that, when properly standardized, the null distribution is asymptotically normal, determine the asymptotic test.