Chapter 10: Problem 11
For any \(n \times 1\) vector \(\mathbf{v}\), define the function
\(\|\mathbf{v}\|_{W}\) by
$$
\|\mathbf{v}\|_{W}=\sum_{i=1}^{n} a_{W}\left(R\left(v_{i}\right)\right) v_{i}
$$
where \(R\left(v_{i}\right)\) denotes the rank of \(v_{i}\) among \(v_{1}, \ldots,
v_{n}\) and the Wilcoxon scores are given by \(a_{W}(i)=\varphi_{W}[i /(n+1)]\)
for \(\varphi_{W}(u)=\sqrt{12}[u-(1 / 2)] .\) By using the correspondence
between order statistics and ranks, show that
$$
\|\mathbf{v}\|_{W}=\sum_{i=1}^{n} a(i) v_{(i)},
$$
where \(v_{(1)} \leq \cdots \leq v_{(n)}\) are the ordered values of \(v_{1},
\ldots, v_{n} .\) Then, by establishing the following properties, show that the
function \((10.9 .53)\) is a pseudo-norm on \(R^{n} .\)
(a) \(\|\mathbf{v}\|_{W} \geq 0\) and \(\|\mathbf{v}\|_{W}=0\) if and only if
\(v_{1}=v_{2}=\cdots=v_{n}\). Hint: First, because the scores \(a(i)\) sum to 0,
show that
$$
\sum_{i=1}^{n} a(i) v_{(i)}=\sum_{i