Chapter 10: Problem 1
Show that Kendall's \(\tau\) satisfies the inequality \(-1 \leq \tau \leq 1\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 10: Problem 1
Show that Kendall's \(\tau\) satisfies the inequality \(-1 \leq \tau \leq 1\).
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn this section, as discussed above expression \((10.5 .2)\), the scores \(a_{\varphi}(i)\) are generated by the standardized score function \(\varphi(u) ;\) that is, \(\int_{0}^{1} \varphi(u) d u=0\) and \(\int_{0}^{1} \varphi^{2}(u) d u=1\). Suppose that \(\psi(u)\) is a square-integrable function defined on the interval \((0,1)\). Consider the score function defined by $$ \varphi(u)=\frac{\psi(u)-\bar{\psi}}{\int_{0}^{1}[\psi(v)-\bar{\psi}]^{2} d v}, $$ where \(\bar{\psi}=\int_{0}^{1} \psi(v) d v\). Show that \(\varphi(u)\) is a standardized score function.
In Exercise \(10.9 .5\), the influence function of the variance functional was derived directly. Assuming that the mean of \(X\) is 0 , note that the variance functional, \(V\left(F_{X}\right)\), also solves the equation $$ 0=\int_{-\infty}^{\infty}\left[t^{2}-V\left(F_{X}\right)\right] f_{X}(t) d t $$ (a) Determine the natural estimator of the variance by writing the defining equation at the empirical cdf \(F_{n}(t)\), for \(X_{1}-\bar{X}, \ldots, X_{n}-\bar{X}\) iid with \(\operatorname{cdf} F_{X}(t)\) and solving for \(V\left(F_{n}\right)\). (b) As in Exercise \(10.9 .6\), write the defining equation for the variance functional at the contaminated \(\operatorname{cdf} F_{x, \epsilon}(t)\). (c) Then derive the influence function by implicit differentiation of the defining equation in part (b).
Optimal signed-rank based methods also exist for the one-sample problem. In this exercise, we briefly discuss these methods. Let \(X_{1}, X_{2}, \ldots, X_{n}\) follow the location model $$ X_{i}=\theta+e_{i}, \quad(10.5 .39) $$ where \(e_{1}, e_{2}, \ldots, e_{n}\) are iid with pdf \(f(x)\), which is symmetric about \(0 ;\) i.e., \(f(-x)=\) \(f(x)\) (a) Show that under symmetry the optimal two-sample score function \((10.5 .26)\) satisfies $$ \varphi_{f}(1-u)=-\varphi_{f}(u), \quad 00 $$ Our decision rule for the statistic \(W_{\varphi^{+}}\) is to reject \(H_{0}\) in favor of \(H_{1}\) if \(W_{\varphi^{+}} \geq\) \(k\), for some \(k\). Write \(W_{\varphi^{+}}\) in terms of the anti-ranks, \((10.3 .5) .\) Show that \(W_{\varphi^{+}}\) is distribution-free under \(H_{0}\). (f) Determine the mean and variance of \(W_{\varphi^{+}}\) under \(H_{0}\). (g) Assuming that, when properly standardized, the null distribution is asymptotically normal, determine the asymptotic test.
Suppose the random variable \(e\) has cdf \(F(t)\). Let \(\varphi(u)=\sqrt{12}[u-(1 / 2)]\), \(0
Let \(X\) be a continuous random variable with pdf \(f(x)\). Suppose \(f(x)\) is symmetric about \(a\); i.e., \(f(x-a)=f(-(x-a))\). Show that the random variables \(X-a\) and \(-(X-a)\) have the same pdf.
What do you think about this solution?
We value your feedback to improve our textbook solutions.