Chapter 1: Problem 8
Let \(X\) be a random variable such that \(E\left[(X-b)^{2}\right]\) exists for all real \(b\). Show that \(E\left[(X-b)^{2}\right]\) is a minimum when \(b=E(X)\).
Chapter 1: Problem 8
Let \(X\) be a random variable such that \(E\left[(X-b)^{2}\right]\) exists for all real \(b\). Show that \(E\left[(X-b)^{2}\right]\) is a minimum when \(b=E(X)\).
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(X\) have the pmf $$ p(x)=\left(\frac{1}{2}\right)^{|x|}, \quad x=-1,-2,-3, \ldots $$ Find the pmf of \(Y=X^{4}\).
Suppose we are playing draw poker. We are dealt (from a well-shuffled deck) five cards, which contain four spades and another card of a different suit. We decide to discard the card of a different suit and draw one card from the remaining cards to complete a flush in spades (all five cards spades). Determine the probability of completing the flush.
If the sample space is \(\mathcal{C}=\\{c:-\infty
A coin is tossed two independent times, each resulting in a tail \((\mathrm{T})\) or a head (H). The sample space consists of four ordered pairs: TT, TH, HT, HH. Making certain assumptions, compute the probability of each of these ordered pairs. What is the probability of at least one head?
In a lot of 50 light bulbs, there are 2 bad bulbs. An inspector examines five bulbs, which are selected at random and without replacement. (a) Find the probability of at least one defective bulb among the five. (b) How many bulbs should be examined so that the probability of finding at least one bad bulb exceeds \(\frac{1}{2}\) ?
What do you think about this solution?
We value your feedback to improve our textbook solutions.