Chapter 1: Problem 23
Let \(X\) have the pmf \(p(x)=1 / k, x=1,2,3, \ldots, k\), zero elsewhere. Show that the \(\mathrm{mgf}\) is $$ M(t)=\left\\{\begin{array}{ll} \frac{e^{t}\left(1-e^{k t}\right)}{k\left(1-e^{t}\right)} & t \neq 0 \\ 1 & t=0 \end{array}\right. $$1.9.23. Let \(X\) have the pmf \(p(x)=1 / k, x=1,2,3, \ldots, k\), zero elsewhere. Show that the \(\mathrm{mgf}\) is $$ M(t)=\left\\{\begin{array}{ll} \frac{e^{t}\left(1-e^{k t}\right)}{k\left(1-e^{t}\right)} & t \neq 0 \\ 1 & t=0 \end{array}\right. $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.