Chapter 1: Problem 23
Let \(C_{1}, C_{2}, C_{3}\) be independent events with probabilities \(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}\), respectively. Compute \(P\left(C_{1} \cup C_{2} \cup C_{3}\right)\).
Chapter 1: Problem 23
Let \(C_{1}, C_{2}, C_{3}\) be independent events with probabilities \(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}\), respectively. Compute \(P\left(C_{1} \cup C_{2} \cup C_{3}\right)\).
All the tools & learning materials you need for study success - in one app.
Get started for freeAssume that \(P\left(A_{1} \cap A_{2} \cap A_{3}\right)>0\). Prove that $$ P\left(A_{1} \cap A_{2} \cap A_{3} \cap A_{4}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1} \cap A_{2}\right) P\left(A_{4} \mid A_{1} \cap A_{2} \cap A_{3}\right) . $$
Let \(X\) be a random variable with space \(\mathcal{D}\). For \(D \subset \mathcal{D}\), recall that the probability induced by \(X\) is \(P_{X}(D)=P[\\{c: X(c) \in D\\}] .\) Show that \(P_{X}(D)\) is a probability by showing the following: (a) \(P_{X}(\mathcal{D})=1\). (b) \(P_{X}(D) \geq 0\). (c) For a sequence of sets \(\left\\{D_{n}\right\\}\) in \(\mathcal{D}\), show that $$ \left\\{c: X(c) \in \cup_{n} D_{n}\right\\}=\cup_{n}\left\\{c: X(c) \in D_{n}\right\\} $$ (d) Use part (c) to show that if \(\left\\{D_{n}\right\\}\) is sequence of mutually exclusive events, then $$ P_{X}\left(\cup_{n=1}^{\infty} D_{n}\right)=\sum_{n=1}^{\infty} P_{X}\left(D_{n}\right) $$
From a bowl containing five red, three white, and seven blue chips, select four at random and without replacement. Compute the conditional probability of one red, zero white, and three blue chips, given that there are at least three blue chips in this sample of four chips.
Let us select five cards at random and without replacement from an ordinary deck of playing cards. (a) Find the pmf of \(X\), the number of hearts in the five cards. (b) Determine \(P(X \leq 1)\).
A bowl contains 10 chips numbered \(1,2, \ldots, 10\), respectively. Five chips are drawn at random, one at a time, and without replacement. What is the probability that two even-numbered chips are drawn and they occur on even- numbered draws?
What do you think about this solution?
We value your feedback to improve our textbook solutions.