Chapter 1: Problem 12
Compute the probability of being dealt at random and without replacement a 13 -card bridge hand consisting of: (a) 6 spades, 4 hearts, 2 diamonds, and 1 club; (b) 13 cards of the same suit.
Chapter 1: Problem 12
Compute the probability of being dealt at random and without replacement a 13 -card bridge hand consisting of: (a) 6 spades, 4 hearts, 2 diamonds, and 1 club; (b) 13 cards of the same suit.
All the tools & learning materials you need for study success - in one app.
Get started for freeSuppose the random variable \(X\) has the cdf
$$
F(x)=\left\\{\begin{array}{ll}
0 & x<-1 \\
\frac{x+2}{4} & -1 \leq x<1 \\
1 & 1 \leq x
\end{array}\right.
$$
Write an \(\mathrm{R}\) function to sketch the graph of \(F(x)\). Use your graph
to obtain the probabilities: (a) \(P\left(-\frac{1}{2}
Suppose there are three curtains. Behind one curtain there is a nice prize, while behind the other two there are worthless prizes. A contestant selects one curtain at random, and then Monte Hall opens one of the other two curtains to reveal a worthless prize. Hall then expresses the willingness to trade the curtain that the contestant has chosen for the other curtain that has not been opened. Should the contestant switch curtains or stick with the one that she has? To answer the question, determine the probability that she wins the prize if she switches.
Let \(X\) have the \(\operatorname{pmf} p(x)=\left(\frac{1}{2}\right)^{x}, x=1,2,3, \ldots\), zero elsewhere. Find the pmf of \(Y=X^{3}\).
Consider the events \(C_{1}, C_{2}, C_{3}\). (a) Suppose \(C_{1}, C_{2}, C_{3}\) are mutually exclusive events. If \(P\left(C_{i}\right)=p_{i}, i=1,2,3\), what is the restriction on the sum \(p_{1}+p_{2}+p_{3} ?\) (b) In the notation of part (a), if \(p_{1}=4 / 10, p_{2}=3 / 10\), and \(p_{3}=5 / 10\), are \(C_{1}, C_{2}, C_{3}\) mutually exclusive?
List all possible arrangements of the four letters \(m, a, r\), and \(y .\) Let \(C_{1}\) be the collection of the arrangements in which \(y\) is in the last position. Let \(C_{2}\) be the collection of the arrangements in which \(m\) is in the first position. Find the union and the intersection of \(C_{1}\) and \(C_{2}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.