Chapter 1: Problem 11
Let \(X\) be a random variable with space \(\mathcal{D}\). For \(D \subset \mathcal{D}\), recall that the probability induced by \(X\) is \(P_{X}(D)=P[\\{c: X(c) \in D\\}] .\) Show that \(P_{X}(D)\) is a probability by showing the following: (a) \(P_{X}(\mathcal{D})=1\). (b) \(P_{X}(D) \geq 0\). (c) For a sequence of sets \(\left\\{D_{n}\right\\}\) in \(\mathcal{D}\), show that $$ \left\\{c: X(c) \in \cup_{n} D_{n}\right\\}=\cup_{n}\left\\{c: X(c) \in D_{n}\right\\} $$ (d) Use part (c) to show that if \(\left\\{D_{n}\right\\}\) is sequence of mutually exclusive events, then $$ P_{X}\left(\cup_{n=1}^{\infty} D_{n}\right)=\sum_{n=1}^{\infty} P_{X}\left(D_{n}\right) $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.